
Tuning Continua and Keyboard Layouts
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A continuously parameterized family of tunings can be mapped to a but-
ton field so that the geometric shape of each musical interval is the same
across all keys and throughout all tunings in the continuum.
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Transpositional Invariance

In this layout, intervals and chords are fingered the same in all keys.
2



Idea of Tuning Invariance

Can we do the same kind of thing (have consistent fingering) across a
range of tunings, instead of across all keys in a single tuning?

For example, can we arrange things so that (say) a 12-tet major chord,
a 17-tet major chord, and a Pythagorean major chord all have the same
fingering (while retaining transpositional invariance)?

When possible, there are several advantages:

• ease of learning new tunings

• ease of visualizing underlying structure of the music

• possibility of dynamically (re)tuning all sounded notes in real time through-
out various tunings
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Two Mappings and an Issue:

There are two mappings involved in the process: the first tempers from an
arbitrary regular tuning to one that can be represented by a finite number
of generators.

The second mapping is from the generators to the button field: translation
invariance is shown to be equivalent to the linearity of this mapping, and
consistent fingering occurs when the linear mapping is also invertible.

Issue: what does it mean to be the “same interval” or the “same chord” in
multiple tunings?
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Two Mappings:

Just Intonation tuning system

Regular
Temperament

Layout

Temperament
Mapping

Lower Rank Tuning System

n-dimensional Button Lattice

Layout
Mapping

linear and invertible

characterised by
null space of comma(s)
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Tempering by Commas: the General Case

Suppose a system S contains p generators g1, g2, . . . , gp where any ele-
ment s ∈ S can be expressed as gi11 g

i2
2 · · · g

ip
p for integers ij. The genera-

tors are tempered by n < p commas, which means that the basis elements
are replaced by nearby values

g1 → G1, g2 → G1, . . . , gp → Gp

where

G
c11
1 G

c12
2 · · ·Gc1pp = 1

G
c21
1 G

c22
2 · · ·Gc2pp = 1

...

G
cn1
1 G

cn2
2 · · ·Gcnpp = 1.
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This set of constraints reduces the dimension from rank p to rank p−n = r.
Gather the coefficients of the commas into the matrix

C =


c11 c12 · · · c1p
c21 c22 · · · c2p... ... ...
cn1 cn2 · · · cnp


and let N (C) be a basis for the null space of C. Then the range space
mapping R : Zp → Zn has a basis defined by the transpose of N (C).



Tempering by Commas: Example I

Consider the 5-limit primes defined by the generators 2, 3, 5, which are
tempered to 2 → G1, 3 → G2, and 5 → G3 by the syntonic comma
G−4

1 G4
2G
−1
3 = 1 and the major diesis G3

1G
4
2G
−4
3 = 1. Then

C =

(
−4 4 −1
3 4 −4

)
has null space N (C) = (12,19,28)′. Thus R = (12,19,28), and a
typical element 2i13i25i3 is tempered to Gi11 G

i2
2 G

i3
3 and then mapped by

R to 12i1 + 19i2 + 28i3. All three temperings can be written in terms of
a single variable α as G1 = α12, G2 = α19, and G3 = α28. If the choice
is made to temper G1 to 2 (to leave the octave unchanged) then α = 12√2

and the result is 12-tone equal temperament.
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Tempering by Commas: Example II

The 5-limit primes defined by the generators 2, 3, 5, may be tempered to
2→ G1, 3→ G2, and 5→ G3 by the syntonic comma G−4

1 G4
2G
−1
3 = 1.

Then C = (−4,4,−1) has null space spanned by the rows of

R =

(
1 1 0
−1 0 4

)
.

Typical elements 2i13i25i3 are tempered to Gi11 G
i2
2 G

i3
3 and then mapped

via

R

 i1
i2
i3

 =

(
i1 + i2
−i1 + 4i3

)
.

The tempered generators can be written in terms of two basis elements α
and β of the columns of R as G1 = αβ−1, G2 = α, and G3 = β4.
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α-Reduced β-Chains

are generated by stacking integer powers of β and then reducing (dividing
or multiplying by α) so that every term lies between 1 and α. For any i ∈ Z,
the ith note is

βiα−bi logα(β)c

where bxc represents the largest integer less than or equal to x. α-reduced
β-chains define scales that repeat at intervals of α; α = 2, representing
repetition at the octave, is the most common value.
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Valid Tuning Range

Any interval s ∈ S can be written in terms of the p generators as s =
g
i1
1 g

i2
2 · · · g

ip
p where ij ∈ Z, or more concisely as the vector s = (i1, i2, · · · ip).

A set of n commas defines the temperament mapping R. Consider a priv-
ileged set of intervals

1 = s0 < s1 < s2 < . . . < sQ,

which can also be represented as the vectors s0, s1, . . . , sQ. Given any
set of generators α1, α2, . . . , αp−n for the reduced rank tuning system,

each interval si is tempered to Rsi = α
j1
1 α

j2
2 . . . α

jp−n
p−n where jk ∈ Z. The

α-generators define the specific tempered tuning and the coefficients jk
specify the exact ratios of the privileged intervals within the temperament.
The set of all generators αi for which

1 = Rs0 < Rs1 < Rs2 < . . . < RsQ

holds is called the valid tuning range (VTR).
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Example: The Primary Consonances

Perhaps the most common example of a privileged set of intervals in 5-limit
JI is the set of eight common practice consonant intervals

1,
6

5
,
5

4
,
4

3
,
3

2
,
8

5
,
5

3
,2

which are familiar to musicians as the unison, just major and minor thirds,
just perfect fifth, octave, and their octave inversions.
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Finding the VTR

The requirement that Rsi+1 > Rsi is identical to the requirement that
Sx > 0 where

S =


s1 − s0
s2 − s1...

sp−n − sp−n−1

 and x =


log(α1)
log(α2)...

log(αp−n)

 . (1)

(The inequality signifies an element-by-element operation.) This is the in-
tersection of p − n half-planes with boundaries that pass through the ori-
gin. The monotonicity assumption guarantees that the intersection is a
nonempty cone radiating from the origin; this cone defines the VTR.
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Example: 5-Limit Syntonic Continuum

The primary consonances are mapped by R to
(

0 5 −6 2 −1 7 −4 1
0 −3 4 −1 1 −4 3 0

)T
In terms of the generators α and β this is

α0β0 < α5β−3 < α−6β4 < α2β−1 < α−1β1 < α7β−4 < α−4β3 < α1β0

Rewriting this as a matrix gives(
5 −11 8 −3 8 −11 5
−3 7 −5 2 −5 7 −3

)T(
x1
x2

)
>

(
0
0

)
.

This region is the cone bounded below by x2 = 11
7 x1 and bounded above

by x2 = 8
5x1, or α

11
7 < β < α

8
5 . For α = 2, this covers the range between

7-edo and 5-edo. Outside this range, one or more of the privileged inter-
vals changes fingering. This VTR range is identical to Blackwood’s range
of recognisable diatonic tunings, to the 12-note MOS scale generated by
fifths.
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Valid Tuning Ranges: With α = 2, the size of major second (M2), minor
second (m2), and augmented unison (AU) over a range of β.
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The VTR for the syntonic
continuum (given by the
primary consonances) cor-
responds to Blackwood’s
range of “recognizable di-
atonic tunings” and to the
12-note MOS scale gener-
ated by fifths
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VTRs are Easy:

A selection of temperaments with 2→ α and 1 < β < 2
1
2 . VTR values for

the primary consonances are rounded to the nearest cent and the comma
vectors presume that 2→ G1, 3→ G2, 5→ G3.

Common name Negri Porcupine Hanson Magic
Comma (−14,3,4) (1,−5,3) (−6,−5,6) (−10,−1,5)
VTR (cents) 120–150 150–171 300–327 360–400

Common name Würschmidt Semisixths Schismatic Syntonic
Comma (17,1,−8) (2,9,−7) (−15,8,1) (−4,4,−1)
VTR (cents) 375–400 436–450 494–514 480–514
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Two Mappings:

Just Intonation tuning system

Regular
Temperament

Layout

Temperament
Mapping

Lower Rank Tuning System

n-dimensional Button Lattice

Layout
Mapping

linear and invertible

characterised by
null space of comma(s)
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Layout Mappings

A layout mapping L is the physical embodiment of a mapping from a regu-
lar temperament to a button lattice.

(I) Linear layout mappings are transpositionaly invariant.

(II) Conversely: transposition invariance implies linearity of the layout map-
ping

L must be invertible, or else either some buttons would have no assigned
note (or some notes would have no corresponding button). For fair com-
parisons, det(L) = ±1.
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Some Layout Matrices

Hexagonal: BHex =

(
1.07 0.54
0 0.93

)
Square: BSqu =

(
1 0
0 1

)

Thummer: BThu =

(
1.25 0.62
0 0.80

)
Wilson: BWil =

(
0.94 0.47
0.35 1.23

)

L1 =

(
0.54 1.07
0.93 0

)
Wicki: LWic =

(
0 0.54

1.86 0.93

)

L2 =

(
2.69 1.61
0.93 0.93

)
CBA-B: LCBA-B =

(
3.76 2.15
2.79 1.86

)

CBA-C: LCBA-C =

(
3.76 2.15
−2.79 −1.86

)
Fokker: LFok =

(
6.45 3.76
1.86 0.93

)

Bosanquet: LBos =

(
4.90 2.86
0 0.20

)
Wilson: LWil =

(
5.66 3.30
0 0.18

)
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The Layout Matrix Defines a Swathe

L = (ψ ω) =

(
ψx ωx
ψy ωy

)
As successive notes in an α-reduced β-chain are laid onto a button-lattice
they cut a swathe across it. The size of the swathe determines the mi-
crotonal and modulatory capabilities of the instrument; the number of α-
repetitions determines the overall pitch range of the instrument. The num-
ber of physical buttons on any given keyboard lattice limits the total number
of intervals; the choice of layout L determines the trade-off.
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Swathes produced by
the Wicki layout (left)
and the Fokker layout
(right) for z = 7

12 (first
row), z = 2

3 (second
row), z = 1

4 (third row).
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The Swathe

The vector position vn of the nth note in a swathe can be expressed as a
function of α, β, ψ, and ω as

vn = nω − bnzcψ where z = logα(β)

and n ∈ Z. The slope

m =
ωy − ψyz
ωx − ψxz

and thickness of the swathe are given by

T =
1√

(ωx − ψxz)2 + (ωy − ψyz)2
.

Result: The higher the T , the narrower it is.
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Monotonic pitch axis

An isotone is a straight line drawn across a button-lattice that passes
through the centres of buttons that produce equal pitch. The shortest dis-
tance of a button from an isotone is monotonically related to its pitch, so a
line drawn at right angles to an isotone is called a monotonic pitch axis.

Result: An isotone has a slope equal to the swathe slope m.

Result: The shortest distance of a button from any given isotone is mono-
tonically related to its pitch.
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Through the Syntonic Tuning Continuum I

β = 2
4
7 (7-tet)
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Through the Syntonic Tuning Continuum II

2
4
7 < β < 2

7
12
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Through the Syntonic Tuning Continuum III

β = 2
7
12 (12-tet)
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Through the Syntonic Tuning Continuum IV

2
7
12 < β < 2

10
17
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Through the Syntonic Tuning Continuum V

β = 2
10
17 (17-tet)
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Through the Diatonic Tuning Continuum VI

2
10
17 < β < 2

3
5
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Through the Syntonic Tuning Continuum VII

β = 2
3
5 (5-tet)
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...work in progress...

But won’t these weird temperings sound horribly
dissonant?

In the same way that JI is related to the harmonic spectra (through the pro-
cess of generating a dissonance curve with minima that lie at the desired
scale steps), so the tempered intonations can be related to spectra with
tempered partials.

The overtones of a sound can be matched to the temperaments in a straight-
forward way using the generators. The dissonance curves of these tem-
pered harmonics have minima at the locations of the primary consonances
of the related temperaments.

We can change the spectrum of the sounds along with the tunings!
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Possible mappings (using
5-limit syntonic JI) for the
harmonics as a function of
the generators α and β:
O = α (octave)
F = βα−1 (fifth)
T = α−6β4 (third)

2, 3, 5 jO, jF, jT O , F, T O , F, S
1 11 1 1 1
2 21 jO1 O1 O1

3 31 jO1 jF1 O1 F1 O1 F1

4 22 jO2 O2 O2

5 51 jO2 jT1 O2 T1 O1 F1 S1

6 21 31 jO2 jF1 O2 F1 O2 F1

7 71

8 23 jO3 O3 O3

9 32 jO2 jF2 O2 F2 O2 F2

10 21 51 jO3 jT1 O3 T1 O2 F1 S1

11 111

12 22 31 jO3 jF1 O3 F1 O3 F1

13 131

14 21 71

15 31 51 jO3 jF1 jT1 O3 F1 T1 O2 F2 S1

16 24 jO4 O4 O4
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Dissonance curves for
the various spectra cre-
ated from the generators
over the syntonic contin-
uum have minima at the
required primary conso-
nances.

5-tet

22-tet

12-tet

7-tet
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A I-IV-V-I progression an-
notated in several tun-
ings throughout the syn-
tonic continuum. Listen to
the progressions with the
tempered spectra.
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Prototype “Thummer” Keyboard
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Summary

It is possible to design keyboards capable of smoothly moving among a
continuum of tunings, retaining the same fingerings in all keys over the
continuum. This uses a parameterization based on commas.

The Valid Tuning Range can be easily calculated in terms of a set of privi-
leged intervals (e.g., the primary consonances)

Linear Layout maps can be understood in terms of properties of the swathe
(slope and thickness) and of a monotonic pitch axis.

It is also possible to modify the spectra of sounds so that a degree of
consonance can be maintained throughout the continuum.
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