‘% NOTICE: This material may be protected
NORTH - HOLLAND by copyright law (Title 17 U.S. Code)

Multiplication-Free Evaluation of
Polynomials via a Stochastic Bernstein Representation

Chi-Chin Chou and William A. Scthares

Department of Electrical and Compuler Engineering
University of Wisconsin-Maedison

1415 Johnson Dr.

Madison, Wisconsin 33700

chou@cac.wisc. edu, sethares@ece. unsc.edu

ABSTRACT

A new multiplication-free method for the evaluation of multidimensional pelyno-
misls is proposed. The method is based on a Stochastic Bernstein Representation
{SBR) and utilizes a random number generator, a locally enceded data structure, and
a system table. The SBR is shown to be capable of representing any polynomial
function and of approximating any continuous function arbitrarily closely, An error
bound analysis is performed using a large deviations technique. A variant of the
SBR, which has been used by others to balance an inverted pendulum, is also
analyzed.

1. INTRODUCTION

Polynomial evaluation is needed in many scientific and engineering
disciplines. In computer aided geometric design (CAGD), powerful multidi-
mensional polynomial representations are crucial to many aspects of object
modelling [1]. In contrel and communication, simple and efficient polynomial
evaluation is important for real time implementation of nonlinear con-
trollers. Although a one-dimensional polynomial can always be simply
tepresented by a look-up table, this is not practical in higher dimensions
because memory storage requirements increase exponentially with the di-
mension. On the other hand, evaluation of a polynomial by straightforward

APPLIED MATHEMATICS AND COMPUTATION T79:1-25 (1996)
® Elsevier Science Inc., 1996 0096-3003 /96 /$15.00
655 Avenue of the Americas, New York, NY 10010 5SD1 0096-3003(95)00156-C

2 C.-C. CHOU AND W. A, SETHARES

multiplication requires considerable computation time and is often impossi-
ble in real time applications. For some special polynomial forms, iterative
methods of computation are available (such as the Horner method for the
power form [2, 3, 4, 5] or the de Casteljau algorithm for the Bernstein form
(6D. But in all of these methods, either multiplication is indispensable, or
the algorithm cannot be parallelized in more than one dimension.

This paper proposes a new method of multiplication-free evaluation of
polynomials which can be readily implemented in paraliel. The method,
which we call the Stochastic Bernstein Representation {(SBR), is based on a
random coding of the input and a mapping that is fundamentally based on a
neighborhood, or local structure, We show that the SBR can converge to
any continuous function almost surely in the pointwise sense, and an error
bound is given that relates the required length of the input/output array
tables and the final error in the functional representation. A variant of the
SBR. is also analyzed which explains and justifies an algorithm that has been
used to balance an inverted pendulumn by Lee et al, [7, 8]. We show that the
success of this variant of the SBR (called a “*Stochastic Cellular Automata’
in these papers) is based on a polynomial approximation to the solution of
the underlying nonlinear dynamical system.

Any one-dimensional n'* order polynomial can be represented in a
standard power form as L% ja;z’, or it can be represented in “Bernstein
form” as L b,z(1 — 2)" " for all z € (0, 1). The sets of coefficients g,
and b, are in one to one correspondence and can be transformed readily as
[19]

-1

4 = Jé](—l)k"’(Z](?)_ b,

This Bernstein polynomial form provides the basis on which the SBR is
built.

In Section 2, the one-dimensional SBR is proposed. Section 3 shows that
the SBR can approximate any continucus function almost surely in the
pointwise sense. In Section 4, a large deviation technique is used to analyze
the convergence rate and to estimate the required length of the input/out-
put array for a given approximation error, Section 5 generalizes the one-di-
mensional SBR to multiple dimensions. In Section 6, several issues are

Multiplication- Free Evaluation of Polynomials 3

briefly discussed: First, the random number generator can be profitably
implemented by an appropriate Cellular Automata {CA) which is further
detailed in [20], second, the “Stochastic Cellular Automata’ of Lee et al. is
analyzed, and third, the parameter estimation problem for the system table
is discussed. Conclusions appear in the final section.

2. THE STOCHASTIC BERNSTEIN REPRESENTATION IN
ONE DIMENSION

Consider the following representation of a function as shown in Figure 1.
Let the input z take values between 0 and 1 and let y be the output. Select
an odd integer n that defines the local neighborhood size, and an integer 1
that defines the resolution or fineness of the representation, The SBR
representation is composed of three parts.

Input array: The input array is a binary [vector. Each element of the input
array is assigned 1 with probability =z, and 0 with probability 1 — =z.

|~ -

i
[ofoffoToTo B Toa o o1 [1] inputamey:
N binary | vectors
__i I ’<_windown-5

row 0 1 2 31 4 5 & column

i} 001 1 ¢ 1 001 11

1 01 1 111 00011

2 1100010001 1

3 11 000 oMo 1 0 1] system table:
4 D1 a1 01061 110 el raws and
S ¢ o1 600 1V e 0 0

L3 111 01 001 @

i
(LT T T T TR T TTITT] ouwstamy

binary | vectors

Fig. 1. The Stochastic Bernstein Representation as illustrated by this mapping of the ;**
bit of the input array. The sum of elements in the a = 5 window around the 7* bit (sum = 3
in this case} points to the third row of the system table. A random number (in this case 6) is
chosen, and the value of the element in row 3, column 6 is mapped to the 7** bit of the output
array.

4 C.-C. CHOU AND W. A. SETHARES

System table: The system table is an n + 1 by m binary matrix. The ratio
of the number of 0's and 1's in each row is used to determine the
coefficients of the polynomial to be approximated, and the value of m
determines the resolution (fineness of representation) of the coefficients.

QOutput array: The ocutput array is a binary ! vector whose elements are
determined from the system table by the mapping mechanism described
below. The output value y{z) is defined to be the normalized sum of the
elements of the output array.

Mapping mechanism; The value of the j** element of the output array is
determined as follows, The sum of the n nearest neighbors of the j*
element of the input array (call this sum) is used as a pointer to row s
of the system table. Note that the value of the sum s ranges from 0 to n,
and thus there are n + 1 rows in the system table. The value of the ;'
element of the output array is then a copy of some element (which is
chosen randomly) from the s* row of the system table. The complete
SBR functional form can be written clearly in pseudo code:

Define:

h

IAL K] = k™ element of the input array.

STli, 1 = value of the element of the system table in the i** row and j*
column.

QAL k] = k* element of the output array.

Random(0, &) = a uniform random number between 0 and A.

Integer() = integer part of a real number n.

Initialize the input array:

fork=1,...,1
rl = Rendom(0, 1)

1 ifrl>zx
IALk} = {0 frl<e

end &

Mapping mechanism:

forj=1,...,1
s = TG s, JALKD
r2 = Integer{ Random(Q, m))
OAl 71 = 8T s, r2]
end j

Calculate the output value:

Wz = 1/D8L OAL).

Multiplication-Free Euvaluation of Polyromials)

REMARKS.

(1) The mod function in the calculation of s essentially turns the intput
array into a “‘circular buffer’ and allows all elements j to have n neighbors.

(2) The accuracy for which a given input z and its corresponding output
1#{z) can be represented is dependent on the number of elements ! in the
input array. Larger [implies more accurate representation.

(3) The complexity of the mapping between z and { z) is dependent on
the number of neighbors n. Larger n implies more complex mappings.

Concrete results of the accuracy of representations and the complexity of
representations as functions of n and [are given in the following sections.

The following examples illustrate how the SBR can be used to represent
(or approximate) functions. The system tables are found by expanding the
functions in a basis formed by Legendre polynomials and then transforming
to find the coefficients of the Bernstein polynomials. In the figures, the selid
line is the original function, the squiggly line is the SBR approximation.

ExaMPLE 1. Choose n=15 and m = 100 to approximate flz}=
0.151sin(27) + 0.5. With ¢ = 5000, plots of f(z) and the SBR approxima-
tion are shown in Figure 2a. The error is shown in Figure 2b. With

0.7 0.03
08 0.02
.01
0.5
9
0.4 +0.01
0.3 0.5 1 002, 0.5 1
(a} [b)
0.7 0.02
0.6 0.01
0.5 9
0.4 -6.01
03 0.5 1 008) 1
(c} {d)

FiG. 2. Approximations to f{z} = 0.151sin(27 z) + 0.5. (a) A z) and the { = 5000 ap-
proximation. {(b) error between f(z) and the ! = 5000 approximation. (¢) f{z) and the
I = 20000 approximation. {d) error between f{z) and the { = 20000 approximation.

6 C.-C. CHOU AND W. A, SETHARES
0.8 0.04
0.02
0.5
0
0.4
-0.02
3% 0.5 1 0.040 0.5 1
{a) (b}
0.85 0.02
05 0.01
0.45
¥
0.4
0.35 001
D'30 05 1 0'020 0.5 [
(e} {d)

FIG. 3. Approximationsto f{z} = 0.0167sin(2% z)exp(3 2} + 0.5, (a) f(=) and the { = 5000
approximation. (b) error between f(x) and the [= 5000 approximation. {c} f(z) and the
[= 20000 approximation. (d) error between f{z) and the { = 20000 approximation.

I = 20000, Figure 2¢ shows the approximation and Figure 2d shows the
error. As [increases, the error decreases.

ExamMpLE 2. Choose n=5 and m = 100 to approximate f(z) =
0.0167 sin{27 2)exp(3 z). With { = 5000, plots of f{ z) and the SBR approxi-
mation are shown in Figure 3a. The error is shown in Figure 3bh. With

= 20000, Figure 3¢ shows the approximation and Figure 3d shows the
error. Again, note how the error decreases as ! increases.

3. CONVERGENCE

This section shows that the SBR can be used to approximate any
continuous function almost surely in the pointwise sense.

Define an equivalence class @.(z) to consist of all order n polynomials
which can be derived from each other by scaling and biasing, i.e., p(z) and
g(z) are both members of a single class Q () if and only if there exist ¢
and d, such that p(z) = cq(z) + d.

The first lemma shows that the expected value of any SBR of order n
{where n is the number of neighbors used to calculate the pointer into the

Multiplication-Free Eualuation of Polynomiols 7

system table) is capable of representing any polynomial of order n, up to the
equivalence class @,(«). Since the SBR is stochastic in nature, the represen-
tation is only valid almost surely. Details are in the second lemma.

LEMMA 1. Given any n'* order polynomial p{z), let () (z) represent the
class of order n polynomials that are equivalent to p(z) under scaling and
biasing. Then there is a SBR function y(z) represented by e (n + 1} X m
system table, and o ¢(2) € Q) such that

E[y(z)] = o(z) Vze01].

Proor. See the Appendix A.
As pointed out in Appendix A, the expected value of the 5 hit of the
output array is

() =b(l—2)" + b(1 —2)" 'z + -
+b(1 =) Tt e 4 b 2", (1)

where b, = o,C! and q; and C} are defined in Appendix A, which is known
as the Bernstein polynomial of order n [9).
Next, define the random vartable

Y(z) = ,(z) with probability 1.

LEMMA 2. Let§(z) = (1/DLL. | y(z). Then with fized n, §{z) - Y(z)
a.s forallze[0,1] as 1 — oo,

FPROOF. Since n is finite and z € [0, 1], 3{) is finite by (1). By the
Strong Law of Large Numbers for the i.i.d. case [10], the lemma follows. =

Thus, the two lemmas show that when [— e, any polynomial up to
order n (or its equivalent after scaling and biasing) can be approximated
almost surely in the pointwise sense by the SBR with a system table
cantaining n + 1 rows. Finally, letting n increase provides the main result
that any continuous function can be approximated by a suitable SBR.

8 C.-C. CHOU AND W. A, SETHARES
THEOREM 1, Given any continuous function f(x) defined on [0, 1], let
W{(z) represent the class of continuous functions that are equivalent to f(x)

under scaling and biasing. Then there is a sequence of SBR fundtions y,(©)'s
represented by (n + 1) X m system tables, and o g{z) € W(z1) such that

y,.(5) - g(I) a5 Vo€ [O,]_] asm — o,

ProorF. This theorem follows by the above two lemmas and the Weier-

stress-Stone Theorem [11]. m

4. ERROR BOUND

Since the SBR is a stochastic approximation of a deterministic function,
there is always some error. The two examples of Section 2 suggest that this
error decreases as [increases. This section gives a bound on the error in
terms of the probability of exceeding a certain velue. The analysis supposes
that a;'s are represented exactly (i.e., m is infinite) and derives the bound
by applying a result from large deviations. .

Consider the sample average of i.i.d. random variables

Wty bty
W= I

where {y}, i=1,2,... are ii.d. with finite mean m . Consider the function

I(t) = SI;P[Bt— log M(8)],

where 8 is a real number and
M(8) = Elexp(6y)]-

M(9) is called the moment generating function, and K¢} is called the large
deviation rate function. The following properties of K{) are known, and
proofs can be found in [12]. '

ProPERTY 1. K t) is conver.

Multiplication-Free Evaluation of Polynomials 9

PrOPERTY 2. K{) has its minimum vaelue at t = m,. Furthermore,
](my) = 0.

The main large deviation result is from Cramér:

THEOREM 2. Assume that M(8) < = for all 8. Then for every closed
subset F C R,

1
lim sup Tlog Ply, e F) € — inf I(1). (2)

no o te F

For the SBR. in Section 1, let A() represent Equation (1) which is the
expected value of any output bit y,(z). Notice that any output bit y(z) is
either 1 or 0. Then

M(8) = E[exp(8y{ z)}]
= e®A(z) + 1 - A(z).

Consider F = [A(z) + &,1], where £ is a small positive number. By the
two properties of K1),

inf I(t)

te F

I A(z) + &)

s:llp[ﬂ(A(z) +) — log[egff(z) + 1 — A(:.s)”)]

Since the term in the curly brace of (3) is a continucus function of 8, the
supremum becomes the maximum which occurs at

(1 = A(2))(A(2) + &)
ACz)(1 = (A(z) + &)

6*(z) = log

1

and the maximum value is _
(1= A(=))(A(z) + &)
A(z)(1 - (A(z) + ¢))

1- A(2)
_ML—MWHQ

H{A(2) + &) =log

}(A(Z)Jr«e)

: (4)

Note that (4) is a function of 2. An example shows how to apply this result.

10 C.-C. CHOU AND W, A, SETHARES

EXAMPLE 3. What value of [is needed in the SBR to approximate the
polynomial

p(2) = 0.5024135C3(1 —)° + 0.665843CH1 —)z
+ G3(1 - 2)"a” + 0.334157CY(1 — z) ' + 0.497586C) 2",

(which is the 5" order polynomial used to approximate fz) =
0.151sin(27 z) + 0.5 in Example 1), so that the largest approximation error
to p(z) over z €[0,1] is less than 0.01 with probability 0.99 and with
probability 0.999

Since the I(-} in (2) represents the rate of the exponential decay of
Pl € F} with F=1{A(2) + 0.01,1] in this example, the global minimum
of I{*) over z € [0, 1] represents the “lowest” rate for P{%y, € F} to decay to
zero. Thus for a fixed n, the largest approximation error will occur at the z
where I(*) achieves it global minimum. By setting the derivative of (4} to
zero, the global minimum of /() is found to oceur at z = 0.998 taking the
value of I{ A(0.998) + 0.01) = 0.00020004. (Actually, there are several z's
in [0, 1] where the global minimum is achieved in this example). To achieve
an approximation error of less than 0.01 with probability 0.99, this implies
that P{7, € F} < (1 — 0.99) = 0.01 at z = 0.998. By (2) and (4)

P{7,(z) € F} < exp[—U(A(z) + 0.01)]

A

exp[— U(A(0.998) + 0.01)]

exp| —0.00020004 {]

il

< 0.01,

Thus, [needs to be larger than 23025. Using an identical argument, an error
of less than 0.01 with probability 0.999 requires ! larger than 34538,

REMARK. Since the resolution of the representations of the g;'s (i.e., m)
in any real SBR is finite, the required ! may be a little larger. On the other
hand, the above calculation of the error bound is conservative (since it
bounds the error at the “worst” =, and the limsup is used in (2)}, the
required [may actually be a little smaller. This can be seen in the Figure 2,
where there is only one point out of 300 points in [0, 1] with error greater
than 0.01, even though { = 20000. Thus, the error bound derived here can

Multiplication-Free Evaluation of Polynomials 11

only serve as an approximation to the required length of the input /output
array.

5. MULTI-DIMENSIONAL SBR

The two-dimensional SBR with (n,, n) neighborhood structure is shown
in Figure 4. The encoding of the inputs and decoding of the output are
analogus to the one-dimensional SBR. The mapping mechanism is also
similar to the one-dimensional SBR. The j** element of the input array is
mapped ta the (s,(n, + 1) +) row of the system table where the sum of
the neighbors around the j** element, of the z input array is equal to s,, and

the sum of neighbors around the j'* element of the y input array is equal to

|t) -l
f 1

1
[o o Bl 0T [s [i]e] ot srese

binary | vectors

[JeTTelele B [ololefolt 1] meutamys

binary 4 vectors
_...l wmeT l..-,,., window nxeny=3

row (-2 - SN O cohurmn
0 ¢eCc1 1 0001 11
1 [2 T T T R T Y S S R |
2 11 ¢ 001 00011
1 1T 1. 00 00001 01
4 916101011 ¢+t 10
5 ¢ 01 00 0000
6 111 1 010001 10
7 [efel 7 o 1 0’0 T 71 1] systam table:
T
9 1160000 01 1
10 1 1. 0 00 & 00 % Q1
" e 1 01 01907110
12 ¢ ¢ 1 00081000
13 I 1 110 1601 1 @
e 1 1 000 00Q@ 1 01
15 0Dy 019 VYo 11Ty
i
[[I I l l] E—I | I I | I | DULPUT arTay:

hinary | vectors

F16. 4. The 2-D Stochastic Bernstein Representation is illustrated by this mapping of the
4'* bit of the input array. The sum of elements in the n, = 3 window around the ;' bit of the
input array = (s, = 3 in this case) and the sum of elements in the n, = 3 windows around the
7' bit of the input array y (s, = 1 in this case) points to the row seven of the system table by
the formula: sum = sy{n, + 1) + 3,. sum = 7 in this case. A random number (in this case 1) is
chosen, and the vatue of the element in row 7, column 1 is mapped to the 7'* bit of the output
array.

12 C.-C. CHOU AND W. A. SETHARES

5y Thus, there are (n, + 1Xn, + 1} rows in the system table. The value of
the j* element of the output array is a copy of some element of the
(sy{n, + 1) + 5)* row of the system table, which is chosen randomly. This
may be represented in pseudo-code as:

Define:

IAX[k] = k* clement of the input array z.
IAY[k] = k** element of the input array y.

ST([i, /1 = value of the element of the system table in the i** row and j*
column,

OAlk] = k** element of the output array.
Random{0, h) = a uniform random number between 0 and A.
Integer(r) = integer part of a real number r.
Initialize the input arrays:
for k=1,...,1
71 = Random(0, 1)
72 = Random{0, 1)

_J1 ifrl >z
[AXTK] = 0 ifrlgz

1 ifr2>y -

IAYIRI = {4 r2<y

end k.

Mapping mechanism:

for j=1,...,1
s =(n, + DEYI G Dosst | TAYIE} + TG/ Daser TAXT K]
r3 = Integer{ Random(0, m))

OAl j] = 8T[s, r3]
end j

Calculate the output value:

y(z) = (1/DZ. OA(H).
It is easy to show (as in Lemma 4) that the expected value of the output
is

#z, y) = Z Z a,;CM(1 —)™ - ' CN1 — y) Py, (5)
i=0 j=(
Comparing this polynomial with the power form
2 L by’

i=0 j=0

Multiplication-Free Fualuation of Polynomials 13

shows that there is a one-to-one correspondence between the sets of a,;'s
and b;'s with an appropriate scaling and biasing. Similar lemmas and
theory as in Section 2 can be derived for the two-dimensional SBR, and
generalizations to higher dimensional SBR’s are straightforward.

Exampie 4. Choose n, = n, = 3 and m = 100 to approximate the two

dimensional polynomial (5) where the parameters

ay, = 0.1 gy = 0.1
a, = 12 a, = 0.8
g = 0.3 ay, = 0.7
ay, = 1.0 ty = 1.0
gy =04 = 0.3

@, =05 a,=02

g =04 tg; = 0.1

4, =10 4, =10

were arbitrarily assigned. The results are plotted in Figure 5 and Figure 6,
Figure 5a shows the 2-D function: Figure 5b shows the 2-D SBR approxima-
tion using { == 5000 and Figure 5¢ shows the approximation with | = 20000.

Figure 6a and Figure 6b show the parametric curve ot) = (0.5
sin{2r), 0.5cos(2w t)), for ¢ =[0,1] on the 2-D surface and its two SBR
approximations using [= 5000 and ! = 20000 respectively. Figure 6¢ and
Figure 6d show the curve (1) = (0.5 cos(t}, sin(1)), for ¢ = [0, 1] on the 2-D
surface and its two SBR approximations using ! = 5000 and [= 20000
respectively. Note that as [increases, the error decreases in all approxima-
tions.

For a fixed ! (the length of the input arrays) and with a fixed random
number generator, the size of the memory required to store the input array
for the k dimensional SBR. is & times of the size of the input array for the
one dimensional SBR. For a small number of dimensions, the storage
required in the system table is inconsequential, though for larger dimensions
this grows as (n__.. + 1), where k is the dimension) and n is the

maz max

14 C.-C. CHOU AND W. A. SETHARES

Lo (a) 0o (b ’

0.5
00 {c}

I1c. 5. Approximations to the 2-D function #(z, y) of Example 3. (a) the function =z, 3.
(b} the ! = 5000 approximation. (c) the ! = 20000 approximation,

maximum order of the polynomial to be represented. While this is exponen-
tial growth, it contrasts strikingly with storage requirements for a system
look-up table, in which growth in memory is proportional to r*, where r is
the number of points needed to represent the function. Since the number of
points r needed to represent a given polynomial is much greater than the
order n of the polynomial, r » n, the storage is greatly reduced by a SBR.

6. OTHER ISSUES

6.1. " Random Number Generator

In the SBR, the most complicated computations occur in the random
number generator (RNG). Thus a simple, reliable, and parallelizable RNG is
crucial for practical implementations. It has been reported in several papers
[13, 14] that certain cellular automata (CA) can be used as good parallel
RNG’s. A cellular automata evolves in discrete time with the next value of
one site determined by its previous value and those of its neighbors. It has
heen demonstrated that a rule 30 CA or a hybrid of rules 90 and 150 CA are
very good RNG and can be easily implemented in paralle! [14]. Thus, in a
practical, parallel implementation of the SBR, the input array, system table,

Multiplication-Free Evaluation of Polynomials

1

1
0.8 0B
0.6 06
0.4 0.4
0'20 0.5 0'20 0.5 1
ta) {b)
0.55 0.55
0.8 0.5
0.45 D.45
0.4 04
0.35 0.3%5]
035 0.5 03 0.5 1
{c) (d)

Fit.. 6. Approximations to curves on surface of the 2D funetion =(. y) af Fyg 5a. {a)
o 8) = (0.5sin{2m 1), 0.5 cos(2ar 1)) for £ = [0, 1] and the { = 5000 approximation, (b} 1) =
(0.5sin(2m ¢}, 0.5 cos(2w 1)) for £ =1{0,1] and the = 20000 approximation, {c) o(#) =
(0.5 cos(t), sin{t)) for ¢ =10, 1] and the { = 5000 approximation. (d} «{£) = (0.5 cos(L), sinl(£))
for ¢t = [0,1] and the { = 20000 approximation.

and output array could be augmented by the addition of a suitable CA
based RNG. Practical parallel implementation is discussed in [20].

6.2. A Vuriant of SBR and Iis Application to the Pendulum
Balancing Problem

In the paper [8] Lee et al. use a slightly different encoding mechanism
(which they called a Stochastic Cellular Automata (SCA)) to balance an
inverted pendulum. Instead of assigning values to the bits of the input array
based on a probability distribution determined by the valize of the input z,
they force the number of 1's in the input array to be precisely equal to [lz],
where [2] represents the integer part of z Although they succeeded in
balancing the pendulum, they were unable to explain how and why the
scheme was successful. We show in Appendix B that with the modification
of the encoding of the input array, the (modified) SBR can stiil he used to
approximate any continuous function. Thus, the success of Lee's scheme
may be interpreted as being based on a polynomial approximation to the
solution of the nonlinear dynamic systom equations underlying the inverted
pendulum. Notice that such an encoding scheme of the input ArTaY cannot
be implemented in paraliel.

16 C.-C. CHOU AND W. A. BETHARES

6.3. Specification of the System Table

The number of rows in the system table is determined by the neighbor-
hood structure, and the width of each row is directly related to the
resolution of the coefficients e, There are many ways to find the best a/s to
approximate a given known continuous function. In Examples 1 and 2, the
coefficients were found by expanding the given function in the Legendre
polynomial form and by then comparing the coefficients of the Be.rnstein
polynomial with those of the Lengendre polynomial. One can also view the

input data output data
x1,x2,...3k y1.y2..., vk

o] unknown function T—.

Fic. 7. Approximation of an unknown function via the Bernstein polynomial basis,
By z), Bz}, ..., B{x), where

Bz} = ;01 —)" "',
of order n can be accomplished by solving the normal equation for the parameters ay, a;,..., g,
in the following matrix form.

. - A
Z B(](Ij) Bn(I}))
=1
k k

Bi(z,) Bi(=) 2. Bi{(z) B z)) &
1

=1

k k
2 By(IJ) By(3;) Z By(Ij) Bl(wj)
=1 =1

k
2 By(I,)Bn(fj)

a=1 i

k
E Bn(Ij)Bn(I)) Gy

=l

k k
Z B(3,‘) By{ Ij) E By(Ij) BI(I,‘)
i=1

=1

- = -

s
Bo(z) y
j=1

1
E By(3,‘) Y
=1

|
Y Bz,
=1

where z,, Z3,..., Z; are input data and w,, ¥,...., ¥, are output data,

Multiplication- Free Evaluation of Polynomials 17

specification of the system table as a form of “system identification’' in
which a given set of input/output data. is to be encoded by the SBR. The
problem then reduces to finding a set of a; which best match the input /out-
put data. There are many criteria which can be used to determine an
optimal set of a,'s. For instance, the [? criterion is common in many data
fitting tasks which apply some form of the “ projection theorem’' by which a
normal equation of the coefficients a, can be derived [15] as shown in Figure
7. For other kinds of approximations such as L' or I*, a nonlinear equation
has to be solved and there may be local minimum [16, 17]. There are also
general heuristic methods that can be used to find the coefficients such as
simulated annealing and the genetic algorithm [18). Simple methods such as
bit-flipping [8] may also be useful.

7. CONCLUSIONS

This paper proposed a new method (the so-called Stochastic Bernstein
Representation or SBR} for multiplication-free evaluation of multidimen-
sional polynomials. The SBR uses a random number generator, a local rule
to encode the input, and a system table for calculation of the output. The
scheme is suitable for parallel implementation, Compared to simple table
look-up of a polynomial functions, the SBR requires for less the memory in
higher dimensional cases. The SBR. is much faster than direct evaluation
because it requires no multiplications. Future extensions of this work
include VLSI implementation of the SBR. and detailed application to real
problems.

APPENDIX A: PROOF OF LEMMA 4.

Given z € [0, 1], consider the j** bit of the input array. The probability
that the j** bit is mapped to the i* row of the system table is

probability of row 0 = C(1 —)"

]

probability of row I = C/{(1 — 2)" ' g

probability of row i = C*(1 — z)" 'z’

probability of row n = CPz",

18 C.-C. CHOU AND W. A, SETHARES

where C* = nl/i{n — i)l Let a, be the percentage of I's in the i*" row of
the system table and thus a, € [0, 1]. Then the expected value of the j** bit

of the output array is
7 2) = 0, Co(1 —2)" + o CM{1 — 2} " Tz +
+a,Cr(1 = 2)" 'z 4 o +a,Crz", (6)

which is again the Bernstein polynomial form as in (1).
To make a comparison between an n* order polynomial in power form
with the Bernstein form (6), let

pl2) = 0,C7(1—2)" + 0 CM1—2)" 2+
+a,C(1 —z)" "zt + o +a,Cla”
and B
plr) = d,CM{1-2)" + dCM{1—2)" '+

+ &, CH1 —z)" et + e +d CP2",
where o, = 2a, -~ 1 forall i =0,1,..., n. Clearly, &, € [—1,1] and
P{z) =2p[(2) — L

Thus p,(z) and p/{x) are members of the same equivalence class Q,(2).
Suppose that p,(x) can also be represented in power form as

p(z) =m(by + bz + - +b,z") forall ze[0,1], (M

where b; and m will be chosen later, and b, € R forall i=1,2,...,n a.re
given. Note b, and m only affect biasing and scaling, so all such pl(z) are in
the same @, {).

Multiplication-Free Evaluation of Polynomials 19

Now we show that the exists a unique solution of {m, dy, &,..., d) for
the above equation. Comparing the coefficients of both sides of (7} gives

mby = o
mb, = —dC7 + 4 C7

(8)
mby = dyCf — 4 CPCY 1 + 4,C

From (8), b, = dj/m. Furthermore, (8) can be written in matrix form as

1 0 0 o V[dym by
-y cr 0 - || d/m b,
Cp =it Cr 0 ~ :

| ©
d./m b,
The matrix (9} is invertible since it is lower triangular and none of the
diagonal elements are zero. Let (s, 5,,...,s,) be the solution for
(dy/m, d/m,..., d,/m)and let |s,, | be the maximum absolute value of
the set {s}. Choose m to be 1/ls,,,l, then o, is equal to sm for all
t=10,1,..., n which are in the range [-1, 1] as required.

Since the mapping of the system table to each output bit is independent,
the expected value of the output is

1 !
y(z) = 7 ;] 3;()

= -ﬂl(.'.'L‘),

where [is the length of the input /output array. |

APPENDIX B

This appendix shows that the variant of SBR (which we call SBR') can
also be used to approximate a continuous function by giving a similar result
to Lemma 4 and 5, and Theorem 3 can easily be applied to this case, so
these proofs are omitted.

Without loss of generality, let z be the [iz] as defined in Section 6.

20 C.-C. CHOU AND W. A. SETHARES

LeMMA 3. Given any n'* order polynomial p(z), let Q.{z) represent the
class of order n polynomials that are equivalent to p(z) under scaling and
binsing, Then there is o SBR' function y(z) represented by a (n + 1) X m
system table, and a (1) € Q,(z) such that

Elw(z)] =q(z) Yze(n+1,{-n).

ProoF. Suppose r is an integer such that [— n > 2> n + 1 and let q,
be the percentage of 1's in the i** row of the system table. The probability
of any pattern (0's and 1’s combination) of the input array given a value z
can be calculated as

z!
(I-1(t=-2)(l—-z+1)

Prob{ any pattern| ©} =]

Consider the j** bit of the output array. The expected value 3,(z) can be
calculated as

@’5(3)
z! .
NN
x{aCpCl ™ + Gl O + - +a,CCE1)
zl
T D(-D (imer)
x{aoC[;‘(I_ n({-n- 1)$I'“(l— n—z+1)
+010,"U_n)(5_ n- 1)3:‘|"U~ n—x+2)z
+aiC;;(l—n)(l—n—]_) .-.([#nmz-li-i'l‘l)a:(_q;—l)...(:r__i_l_l)
+a"C":([_'n)(l— n—=1){l—z+ Baz(z— 1) (z—n+ 1)

!

(10)

Multiplication-Free Evaluation of Polynomials 21

The i** term in the brace of (10) multiplied by the term outside the brace
can be written as

(I=n)({-n-1(U-n~-z+i+VDz(z—-1)(z—i+1)
=1 (l-z4+1)

(i)l (I-z—n+itl)z(z-1) - (z—i+1)
- -1 (l—n+1) ’

fori=10,...,n—1,

and the last (') term is

(t=n)(l-n-1D(U-z+Dx(z—-1)(z—n+1)
i-1)(l-z+1)

Hr—1)(z—n+1)
=1 U-n+1)

Thus (10) can be simplified to

1
(=1 (I—n+1)

E"j(z) =

X{aCi(l—2)(I—z— 1) (I~ z—n+1)

+oCM(l-z)(I-z-1)(Ul-z2-n+2Qz
o, Cl-o)({~z-1)~(l-z—+i+ Da(z—-1) - (z—-i+1)

ta, Ch (l-z)z{z~ 1) (z—n+2)

+e,Clz(z~ 1) (z - n+ 1)} (11)

22 - C.-C. CHOU AND W. A. SETHARES
Define the polynomials,
S(ny=(l-z)(l-z-1)(l-2z—-—n+1)
S(z)=(I~z)({l-z~1)(l~z~n+2)z

S{(ay=({l-)(l-z-D(l-z-—n+3)z(z-1)

S(z)=(I~n){{—-z-1}--

{(l-z~na+i+tDz(z~ 1) (z—i+1)

S z)=(-2)e(z—-1) - (z—n+2)
S(z)=z(z~- 1) (z~n+1),

where S(z) is the polynomial term corresponding to e,C? in the brace of
(11). Then {11) can be rewritten

7() = K(I, n){d(n) Sp(2) + d(n) S(=) + -
+d(n}S{ z) + - +dy(n) S 7))},
where

1

e =y ==+

and

d{n) = a,CF, fori=0,...,n

Notice that each S{z) is a polynomial of order n. Next, we want to show
that these n -+ 1 polynomials form a basis for any polynomial of order up to
.

Obvicusly, S,(z) and §,(z) are independent, i.e.,

S,(z) # aS{z), Vz€ R forany constant a. (12)

 Multiplication-Free Evaluation of Polynomials 23

Suppose that there exists a vector (e, oy, .

.o, a;) € R such that for
all z

Sz} = ey Sy(£) + o S(z) + to,_ 5.4 1) (13)
Below, we show that all a's must be zero which then contradicts the

equality assumption (13).
Rewrite (13) as

@S () + @58 (2} + o Hay Sy z) ~ S(z) =0

forall z€ Rand i=0,..., n

The above equation can be expanded as
(-2} l-z-1)(l—2z—n+i+ 1)
X{a (I—z-n+da(z—1)(z~i+2)

+a,-_2(l—:c—n+z')(l—x—n+'é—1):5(::-—1)-~(r—z'+3)

+a](l-—z——n+z')(l—z—n+z'-1)---(l-:c—n+2)a:
+a0(1—-$—n+i)(l~x—n+z'—1)---(l—$—n+1)
—I(m—l)---(z—z'+1)}=0.

'113% the assumptions on (1, n,), the product outside the brace is not zero.
us

a,-_l(l—:c—n+i)x($-1)---(z-z’+2)
4]0:,-,2(!"-3:—n+i)(l—mﬁn+i—1)x(z—1)---(:r~i+3)
+af1(.v,'-:n-—n+z’)(£—zﬁn+i~1)---(tv:c—n+ D
+o:0(l—sc—n+i)(!—z—n+i—l)---(l—r—n+l)

—a(z— 1) (z—i+1) =0, (14)

24 C.-C. CHOU AND W. A. SETHARES

Since the constant term of (14) must be zero, @, = 0. Thus (14) can be
simplified to

a,_(l-z=n+Dz(z— 1) (z—-1+2)

to (l-z—n+d(l-z—n+i-1z(zx—-1)(z—i+3)

+afl—-z-n+)(i-z-n+i-1)--(I-z—-n+2)z
—z(zx—1)-(z—-i+1)=0. (15)

Now the z can be pulled out from each term of {15) and the rema..inder must
be zero. By defining 2 = z — 1, the remainder of (15} can be written as

o, (l-7d—n+i-1DZ(d~1) (g —i+3)
+a, (-7 -n+i-1)(l-¢d—-n+i-2)

XL — 1) (& — i+ 4)

ta(l-2 —n+i-D(-2-n+i-2 (-7 —n+1)

—2(d -1 {2 —i+2)=0. (16)
By the same reasoning, «, must be zero. Thus, oy, a),..., @, are.a.ll
zero, and S(x) is independent of Sy(z), S(2),..., 5;_ () for all 4=
0,1,..., n. This means that S{z)s for i=0,1,..., n form a basis for

polynomials of order n. By the independence of each output_ bit, the
expected value of the output F(z) = (1/DL%., y{z) is equal to F{=z).

With fixed [, n and by choosing appropriate a4, aj,..-, @, we can
approximate any polynomial order n (up to a biasing and scaling) by a
singular argument to that given in Appendix A. []
REFERENCES

1 W. Bohm, A survey of curve and surface methods in CAGD, Computer Aided
Geometric Design 1, pp. 1-60 (1984). .

2 M. L. Dowling, A fast parallel Horner algorithm, SIAM J. on Computing, 19
(1):133-142 (1992). .

Multiplication-Free Evaluation of Polynomials 25

3 W. Burleson, Polynomial evaluation in VLSI using distributed arithmetic,
IEEE Tran. on Circuits and Systems, 37(10):(1990).

4 H. Schroder, Top-down designs of instruction systalic arrays for polynomial
interpolation and evaluation, J. of Parallel and Distribuled Computing
6:692-703 (1989).

5 E. R. Hansen, M. L, Patrick, and L. C. Richard, Polynomial evaluation with
scaling, ACM Trans. on Mathematical Software, 16(1)%:86-93, (1990),

6 L. L. Schumaker and W, Volk, Efficient evaluation of multivariate polynomials,
Computer Aided Geometric Design 3, pp. 149-154 (1986).

7 Y. C. Lee, 8. Qian, R. D. Jones, C. W, Barnes, G. W. Flake, M. K, O'Rourke,
K. Lee, H. H. Chen, G. Z. Sun, Y. Q. Zhang, D. Chen, C. L. Giles, Adaptive
stochastic cellular antomata: theory, Physica D (45):159—180 (1990),

8 Y. C. Lee, S. Qian, R. D. Jones, C. W. Barnes, G. W. Flake, M. K. O'Rourke,
K. Lee, H. H. Chen, G. Z. Sun, Y. Q. Zhang, I. Chen, C. L. Giles, Adaptive
stachastic cellular automata: application, Physica D (45):181-188 (1990).

9 G. G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, 1986,

10 R. B. Ash, Real Analysis and Probability, Academic Press, 1972,

11 P.J. David, Interpolation and Appromimation, Blaisbell Publishing Company,
1963.

12 J. A. Bucklew, Large Dewviation Techniques in Decision, Simulation, and
Estimation, Wiley Interscience Publishing, 1950.

13 S. Wolfram, Universality and complexity in cellular automata, Physica D, pp.
1-35 (1984),

14 P. D. Hortensins, R, D. Mcleods, H. C. Card, Parallel random number generator
for VLSI systems using cellular automata, IEEE Trans on Computers
38(10):1466-1473 (1989). .

15 D. G. Guest, Numerical Method of Curve Fitting, Cambridge, 1961.

16 J. R. Rice, The Approzimation of Functions, Addison-Wesley Publishing Com-
pany, 1964,

17 E. W. Cheney, Infroduction to Approzimation Theory, McGraw-Hill, 1966,

18 D. E. Goldberg, Genetic Algorithm in Search, Oplimization, and Machine
Learning. Addison-Wesley, New York, 1989

19 R. T. Farouki and V. T. Rajan, On the numerical condition of polynomials in
Berstein form, Computer Aided Geometric Design 4:191-216 (1987).

20 Chi-Chin Chou, Optimization via local inleractions: Applications to the Steiner
problem and rapid polynomial investigation, Ph.D. Thesis, University of Wis-
consin, August 1995,

