
Topology of Musical
Data

Techniques for discovering topological structures in large data sets are now
becoming practical. This talk argues why the musical realm is a particularly
promising arena in which to expect to find nontrivial topological features.
The analysis is able to recover three important topological features in mu-
sic: the circle of notes, the circle of fifths, and the rhythmic repetition of
timelines, often pictured in the necklace notation.
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Why Search for Topological Features in Music?

Because there is good reason to expect them to exist!

The Circle of Notes The Circle of Fifths

time

Ewe (Ghana)

Yoruba (Nigeria)

Bemba

(Central Africa)

Rhythmic Cycles
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The Circle of Notes

There are two senses of
“closeness” of tones (1)
nearby in pitch or fre-
quency, (2) having the
same “chroma” or pitch
class (equal but for a fac-
tor of two in frequency).
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The Circle of Fifths

The circle of fifths shows
relationships among the
tones of the chromatic
scale, standard key sig-
natures (i.e., numbers of
sharps and flats), and
the major and minor
keys.
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Rhythmic Cycles

Time moves around the circle
and events are depicted along
the periphery. Since the “end”
of the circle is also the “begin-
ning,” this emphasizes the repeti-
tion inherent in rhythmic patterns.
Diagram depicts three traditional
rhythmic variants of King’s stan-
dard pattern in the “necklace no-
tation.”

time

Ewe (Ghana)

Yoruba (Nigeria)

Bemba

(Central Africa)
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Classic Algebraic Topology: Betti Numbers

A way of classifying surfaces: the Betti number βk is the number of uncon-
nected k-dimensional surfaces.

• β0 is the number of con-
nected components
• β1 is the number of two-

dimensional or “circular”
holes
• β2 is the number of

three-dimensional holes
or “voids”
• etc.

A torus has one connected component
β0 = 1, two circular holes β1 = 2 (one
in the center and one around the tube),
and a three-dimensional void β2 = 1 (the
inside of the tube).
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Topological Surfaces Defined by Data

The Betti numbers of a
cloud of points depends
on scale. For ε small, all
points are separated from
all other points, β0 =

number of points. For ε
large, all points are iden-
tified together and β0 =

1. Interesting things hap-
pen in between small and
large.

ε large 
β0=1 β1=0
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What Metric?

So far, the pictures have been
drawn in R2, but the method
does not require an embedding
in Rn, it just requires the ability
to calculate distances.

The Plex software operates in
two modes: in one mode the in-
put is a collection of points in Rn.
In the second mode, the input is
a matrix containing all distances
between all points.
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Bar Codes and
Persistence

Carlsson’s Plex software draws
bar codes that show how the
Betti numbers change as a func-
tion of scale ε. These show β0,
β1, and β2: features which per-
sist over a range of ε are called
persistent, and may reflect some
underlying structure in the data.
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Defining Distance Between Tones

The pitches of musical tones are generally perceived as a function of fre-
quency in a logarithmic fashion. A metric like | log2(f)−log2(g)| captures
this along with the notion that nearby tones on the circle of notes should
have a small numerical distance. To capture the idea that the “same” note
recurs a factor of two apart in frequency, consider

s = mod(| log2(f)− log2(g)|,1).

But this fails the triangle inequality. Instead, define the distance between
two notes with fundamental frequencies f and g as

d(f, g) = min(s,1− s).

This measures the distance between “pitch classes” and we call it the pitch
class metric.
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The Circle of Notes

There are two senses of
“closeness” of tones (1)
nearby in pitch or fre-
quency, (2) having the
same “chroma” or pitch
class (equal but for a fac-
tor of two in frequency).
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Betti Numbers for the Major Scale

Consider the major scale made of the eight notes C,D,E, F,G,A,B,C
with frequencies specified in the circle of notes. Calculating the distances
between all pairs of notes (using the pitch-class metric) allows Plex to draw
the barcodes. The persistent bar with β0 = β1 = 1 is the circle of notes!
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A more detailed interpretation: When ε is small, there are seven distinct
notes. Though we input eight notes, the high C has exactly the same dis-
tances to all the other notes as the low C under the pitch-class metric,
and thus the barcode merges these two tones even at ε = 0. When ε

reaches 0.08, the two half steps (the intervals between E-F and B-C)
merge. When ε reaches 0.16, the five remaining connected components
(all the major seconds) merge into one. Thus β0 = 1 for all greater ε.
At ε = 0.16, the Dimension 1 code shows a single component, which
persists until ε = 0.4. This β0 = β1 = 1 feature is the circle of notes.
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The major-scale example was
built specifically with the circle of
notes in mind, so it is perhaps
unsurprising that the circle ap-
pears. Will such shapes appear
in real music? Peterson’s web-
site contains a large selection of
traditional melodies in both sheet
music and standard MIDI files.
Here’s an example, and the cor-
responding barcodes are shown
next.
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Interpreting Abbott’s bar code: The top barcode shows eight lines, which
correspond to the eight notes that appear in the score (observe again the
insensitivity to octave). Four disappear at ε = 0.08, which correspond to
the four half steps (F]-F , D]-E, B-C, and D-D]). Three more disappear
at ε = 0.16. Along with the constant bar, these correspond to the four
whole steps (E-F], G-A, A-B, and C-D). All of these join into one bar for
all larger ε. The region 0.16 < ε < 0.33 is characterized by β0 = 1 (one
connected component) and β1 = 1. This is again the circle of notes.
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Incorporating Temporal Information

The above analyses may be somewhat naive because they suppress tem-
poral information in the melody. This can be addressed using a time-delay
embedding, which is common in time series analysis. Suppose that a
melody consists of a sequence of notes with fundamentals at f1, f2, f3, f4....
These may be combined into pairs (a two-dimensional time-delay embed-
ding) by forming (

f0
f1

)
,

(
f1
f2

)
,

(
f2
f3

)
, ...

The distances between such pairs can be calculated by summing the dis-
tances between the notes elementwise using the pitch-class metric. These
distances can now be used to form the barcodes.
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And using 3-D
time delay em-
bedding...
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Harmonic
Barcodes and the

Circle of Fifths

The circle of fifths arises
at the level of musical
chords and scales, and
so it is necessary to gen-
eralize the metric to con-
sider multiple pitches si-
multaneously.
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Generalizing the Pitch-Class Metric

Let f = (f1, f2, ...fn) and g = (g1, g2, ...gn) be two n-tuples, and define
the distance

dcc(f, g) = min
P

d(f, Pg)

where P ranges over all possible permutation matrices and where d(·, ·)
is the pitch-class metric. This chord-class metric calculates the (elemen-
twise) pitch-class distance between f and all the permutations of g. It is
invariant with respect to chord and scale inversion; all reorderings of the
elements of f and g are placed in the same equivalence class.
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Finding the Circle of Fifths

Consider a progression that moves around the circle of fifths: C major to
G major to D major etc, all the way back to F and finally C. Inputting 12
such seven-note sets and calculating the barcodes gives the barcode on
the next slide.

Scales that are a fifth apart (such as C major andGmajor) have a distance
of 0.08 and this explains the twelve lines that merge down to a single
connected set at ε = 0.08 in the β0 (top) plot. For 0.08 < ε < 0.33,
the β1 barcode shows a single persistent bar; this is the circle of fifths!
(There are also some higher dimensional features for larger ε, but the exact
meaning of these is not clear.)

21



22



The progression around the cir-
cle of fifths example was built
specifically with the circle of fifths
in mind. Do such shapes ap-
pear in real music? The classi-
cal music archives website con-
tains a large selection of Bach’s
chorales in standard MIDI file
format. Chorale #19 is parsed
to extract the four voices. The
distances between all four-part
chords are calculated according
to the chord-class metric, and the
results are used to draw the bar-
codes.

Bach Chorale # 19
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The β0 barcode shows a large number of chords that are separated by
ε = 0.08, a somewhat smaller number of chords that are separated by a
distance of ε = 0.16, and two chords separated by ε = 0.23. Above this
value, all chords merge into one connected component.

The β1 barcode shows one circle for 0.16 < ε = 0.23, and this structure
then changes to β1 = 5 for 0.24 < ε = 0.33. Features such as these
appear to be unique identifiers of the particular pieces, meaning that other
Bach Chorales from the same data set have different Betti numbers that
occur over different ranges of ε. Finding the origin of such variations is an
interesting challenge.
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Barcodes for
Rhythmic Cycles

Rhythmic notations represent
time via a spatial metaphor.
The “Ewe” rhythmic variant is
translated into the vector of
time points

{0,
1

6
,
2

6
,

5

12
,

7

12
,
3

4
,
11

12
}

and the distance is calculated
between all pairs

d(f, g) = min(s,1−s) where s = mod(|f−g|,1).

time

Ewe (Ghana)

Yoruba (Nigeria)

Bemba

(Central Africa)
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Interpreting the rhythmic bar code: Barcodes for the Ewe variant of King’s
standard rhythm show the distribution of time intervals in the rhythm in the
top plot and show the circular structure with β0 = β1 = 1 in the bottom.
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As might be expected, more complex rhythmic patterns and higher dimen-
sional embeddings yield more complex barcodes. For instance, the rhythm
of the first 4 measures (a 24 beat cycle) of “Abbott’s Bromley Horn Dance”
is shown in the next slide. As usual, the distribution of short and long inter-
vals is shown in the dimension 0 barcode while the circular structure of the
rhythm appears in the dimension 1 barcode for 0.08 < ε < 0.32. There
are also interesting features to this rhythm in the two and three dimensional
barcodes.
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Summary

This talk argues that an investigation of the topological structures inherent
in musical data is feasible using the ideas of persistent homology. Besides
demonstrating that well known topological features can be derived from
musical data sets, such analyses may be useful in information retrieval, in
analysis of musical pieces, and in applications such as audio segmenta-
tion, melody recognition, and musical classification.

The Circle of Notes The Circle of Fifths
Rhythmic Cycles

time
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Bemba

(Central Africa)
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Some Questions...

• How to handle spectral data and audio .wav data?

• What kind of geometric shapes correspond to the higher level Betti
numbers in the barcodes?

• How can these geometric shapes be interpreted in terms of the musi-
cal piece?

• There are other possible metrics... other ways of incorporating tempo-
ral information. How should the pitch and rhythmic analyses be com-
bined?

• Rhythmic patterns often occur in hierarchies. Can the ideas of per-
sistent homology locate such hierarchical structures from the musical
data?
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Some More Questions...

• Even if the high dimensional barcodes cannot be interpreted easily in
terms of the musical pieces, they might be useful in segmentation.

• Even if the high dimensional barcodes cannot be interpreted easily,
they might be useful in classification.

• It would be nice to have a metric that didn’t require having the same
number of elements in each term (so that 3 note chords could be mea-
sured against 4-note chords, for instance).

• Is it necessary that the distance be given between all pairs of points in
the data set?
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