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Abstract
Techniques for discovering topological structures in large data sets are now

becoming practical. This paper argues why the musical realm is a particularly
promising arena in which to expect to find nontrivial topological features. The
analysis is able to recover three important topological features in music: the circle
of notes, the circle of fifths, and the rhythmic repetition of timelines, often pictured
in the necklace notation. Applications to folk music (in the form of standard MIDI
files) are presented and the bar codes show a variety of interesting features, some
of which can be easily interpreted.

1 Introduction
Carlsson and his coworkers [3] have recently introduced a way of parsing large data
sets using barcodes that show the Betti numbers of an underlying topological space. A
parameter ε is slowly increased and a cloud of points (which may be pictured in Rn) are
identified whenever they are closer together than ε. For ε small, the structure is trivial:
all points are separated from all other points. For large ε, the structure is again trivial,
all points are identified together and the space is topologically equivalent to a single
point. In between small and large, cycles may appear in two dimensions, spheroids in
three dimensions, and other higher dimensional analogs may appear and disappear as ε
changes. Features which persist over a range of ε are called persistent, and likely reflect
some underlying structure in the data. This technique is called persistent homology,
and a number of applications have begun to appear in areas such as image processing
[6] and in the analysis of biological data [14].

The search for such topological features in data is only beginning, and it makes
sense to look in places where one may reasonably expect to find interesting structures.
One such place is in musical data. It is a commonality that in musical scales there
is a “circle of notes” which may be pictured as in Figure 1. This figure encodes two
important aspects of musical perception: notes that are near each other in frequency
(such as C and C]) are perceptually close, and notes that are an octave apart (such as
low C and high C) are perceptually close, even though they differ by a factor of two in
frequency. Obviously, Figure 1 shows a circle, and it is reasonable to ask if such circles
can be recovered from an analysis of musical data.
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Figure 1: A surprising number of insights about musical structure are displayed in this
“circle of notes,” which is like a clock face on which the hours of the day have been
replaced by note names.

A second well known topological structure in music theory is the “circle of fifths,”
shown here in Figure 2, which is taken from the Wikipedia article of the same name
[16]. The circle of fifths is a standard way musicians and composers talk about the
close relationships between musical scales and keys, and represents another way of
interpreting the distance between musical chords and scales. Again, Figure 2 shows
a circle, and it is reasonable to ask if this circle can be recovered from an analysis of
musical data.

Representing temporal cycles as spatial circles is an old idea: Safı̂ al-Din al-Urmawı̂,
the 13th century theoretician from Baghdad, represents both musical and natural rhythms
in a circular notation in the Book of Cycles [1]. Time moves around the circle (usually
in a clockwise direction) and events are depicted along the periphery. Since the “end”
of the circle is also the “beginning,” this emphasizes the repetition inherent in rhyth-
mic patterns. Anku [2] argues that African music is perceived in a circular (rather than
linear) fashion that makes the necklace notation, shown here in Figure 3, particularly
appropriate. Clearly, Figure 3 shows a circle, and it is reasonable to ask if this circle
can be recovered from an analysis of musical data.

This paper shows that all three of these circles can indeed be located in the barcodes
drawn using the techniques of persistent homology.

There are several different types of musical data [12], including

1. spectral data that shows the internal structure of individual sounds,
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Figure 2: The circle of fifths shows the relationships among the tones of the equal
tempered chromatic scale, standard key signatures, and the major and minor keys.

2. audio data that provides a literal (numerical) representation of sound waves,

3. symbolic note data (such as occurs in a musical score or in standard MIDI files)
that provides instructions for a performer to play a specific piece of music,

4. analytical data (such as Roman numeral analysis [10] or Schenkerian analysis
[11]) that can be derived from musical scores to provide theorists with tools to
understand musical progressions, and

5. periodic data that relates to the temporal and rhythmic aspects of music [13].

Any kind of periodicity, if properly embedded, may lead to nontrivial topological struc-
tures, and periodicities may occur in rhythmic data at several levels in a metric hierar-
chy. In principle, it may be possible to locate circles (of notes, of fifths, of periodicities
in rhythmic or tonal material) or other topological structures in many of the above kinds
of data. For this initial investigation, we use MIDI note data, since this is the level at
which the circles in Figures 1-3 are conceptualized, and hence the level at which suc-
cess is most likely.

Section 2 defines a pitch-class metric that allows a clear display of the circle of
notes. Data is taken from a standard repertoire of traditional folk melodies, and the
barcodes are shown to display information about the musical scale used in the piece
(using the Betti0 barcode) and to reflect the circle of notes itself in the Betti1 barcode.
More generally, the note data can be gathered into higher dimensional time-delay em-
beddings. When this is done for the same folk melodies, interesting new (and as yet
unexplained) features arise in the barcodes.
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Figure 3: Traditional rhythms of the Ewe (from Ghana), the Yoruba (from Nigeria)
and the Bemba (from Central Africa) are all variants of the “standard rhythm pattern”
described by King [5]. These timelines are represented in the “necklace notation” as
having different starting points.

Section 3 looks at the issue of measuring chord and scale data (i.e., when multiple
notes occur simultaneously) using the techniques of persistent homology. A metric
called the chord-class metric allows a clear display of the circle of fifths on specially
chosen synthetic data. Chord data is then taken from a traditional folk melody and
MIDI data is used to analyze a collection of four-voice Bach chorales. The barcodes
are shown to display information about the musical chords used in the piece. More gen-
erally, the chord data can be gathered into higher dimensional time-delay embeddings,
and again new and unexplained patterns emerge in the barcodes.

Section 4 analyzes some simple rhythmic patterns (such as those of Figure 3) using
the techniques of persistent homology. The appropriate metric is analogous to those
above, though it must be modified to reflect the fact that temporal data is not perceived
in a logarithmic fashion. Once again, the circular structures are immediately evident
from the barcodes.

2 Melodic Barcodes and the Circle of Notes
The pitches of musical tones are generally perceived as a function of frequency in a
logarithmic fashion. Thus the 15.6 Hz “distance” from C to C] is perceived to be the
same size as the 24.7 Hz “distance” from G] to A (refer to Figure 1 for the origin of
these numerical values). Accordingly, it is reasonable to consider a measure that oper-
ates on log frequency rather than on frequency itself. A metric like | log2(f)− log2(g)|
captures this along with the notion that nearby tones (with fundamental frequencies f
and g) on the circle of notes should have a small numerical distance. But this measure
fails to capture the idea that the C at 261.6 Hz and the high C at 523.2 Hz are effec-
tively the same. This is what happens when a man sings along with a woman (or when
a woman sings along with a child): the “same” note is actually a factor of two apart in
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frequency. This second notion of closeness can be incorporated by using

s = mod (| log2(f)− log2(g)|, 1) (1)

but this is not a metric since it fails the triangle inequality. It can, however, be made a
metric by defining the distance between two notes f and g, expressed in terms of their
fundamental frequency in Hz, as

d(f, g) = min(s, 1− s) (2)

where s is from (1). This measure may be interpreted as a measure of distance between
“pitch classes” [9], since it identifies all Cs, all C]s, etc. into equivalence classes. We
call (1)-(2) the pitch-class metric.

To verify that this metric makes sense, consider a major scale consisting of the
eight notes C,D,E, F,G,A,B,C with the frequencies as specified in Figure 1. The
Plex software [8] is designed to “calculate the persistent homology of finite simplicial
complexes... generated from point cloud data.” In this case, the point cloud is defined
by a matrix of distances between all pairs of the eight notes using the pitch-class metric.
The resulting barcodes are shown in Figure 4.

Figure 4: Barcodes calculated by the Plex software show the number of connected
components in the Dimension 0 plot (top) and the number of circles in the Dimension
1 plot (bottom), as the size parameter ε varies.

These two plots are straightforward to interpret. When the size parameter ε is small,
there are seven distinct notes. Though we input eight notes, the high C has exactly the
same distances to all the other notes as the low C under the pitch-class metric (1)-(2),
and thus the barcode merges these two tones even at ε = 0. When ε reaches 0.08, the
two half steps (the intervals between E-F and B-C) merge. When ε reaches 0.16, the
five remaining connected components (all the major seconds) merge into one. Thus
Betti0 = 1 for all greater ε. At ε = 0.16, the Dimension 1 code shows a single
component, which persists until ε = 0.4. This Betti1 = 1 feature is exactly the “circle
of notes” shown in Figure 1.

The example of Figure 4 was built specifically with the circle of notes in mind,
so it is perhaps unsurprising that the circle appears. Will such shapes appear in real
music? The website [7] contains a large selection of traditional melodies, with most
tunes available in both sheet music and as standard MIDI files. The musical score for
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Figure 5: Barcodes for the traditional folk tune “Abbott’s Bromley Horn Dance” (see
Figure 6) show many of the same features as the major scale barcodes of Figure 4. The
distribution of whole and half steps are clear from the Betti0 code for small ε while the
circle of notes appears again in Betti1 when 0.16 < ε < 0.33.

“Abbott’s Bromley Horn Dance” is shown in Figure 6 and the corresponding barcodes
are shown in Figure 5.

The top barcode in Figure 5 shows eight lines, which correspond to the eight notes
that appear in the score (observe again the insensitivity to octave). Four disappear at
ε = 0.08, which correspond to the four half steps (F]-F , D]-E, B-C, and D-D]).
Three more disappear at ε = 0.16. Along with the constant bar, these correspond to
the four whole steps (E-F], G-A, A-B, and C-D). All of these join into one bar for
all larger ε. The region 0.16 < ε < 0.33 is characterized by Betti0 = 1 (one connected
component) and Betti1 = 1, one circle. This is again the circle of notes. In fact, all
the melodies from the website [7] show this same structure, though the number of half
and whole steps changes to reflect the scale of the piece, and the exact extent of the
Betti0=Betti1 = 1 region is somewhat variable.

The analyses of Figures 4 and 5 may be somewhat naive because they suppresses
temporal information in the melody. This can be addressed by using a time-delay
embedding, which is a common procedure in time series analysis. Suppose that a
melody consists of a sequence of notes with fundamentals at f1, f2, f3, f4.... These
may be combined into pairs (a two-dimensional time-delay embedding) by creating
the sequence (f0, f1), (f1, f2), (f2, f3), .... The distances between such pairs can be
calculated by adding the distances between the notes element-wise using the pitch-class
metric.1 Building a matrix of all such distances for “Abbott’s Bromley Horn Dance”
and calculating the barcodes gives Figure 7.

The Dimension 0 barcodes (the top plot in Figure 7) can be interpreted as showing
the distances between pairs of notes as the melody progresses over time. Thus there are
11 pairs of notes that are at a distance of one-half step, since 11 lines end at ε = 0.08.
There are 19 pairs that differ by a whole step since 19 lines end at ε = 0.16. Above this
value, all pairs have merged into a single connected component. This can be interpreted
as saying that the melody progresses primarily by stepwise motion, and that no pairs
of tones are isolated from any other pairs of tones (though of course there are many

1Distances may alternatively be calculated using the chord-class metric dcc of (3). The differences in the
resulting barcodes appear to be subtle, at least for the traditional melodies of [7].
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Figure 6: The traditional melody “Abbott’s Bromley Horn Dance” is taken from Chris
Peterson’s collection [7]. The standard MIDI version of this melody is analyzed using
the ideas of persistent homology in Figures 5, 7, 8, 10, and 11, and a barcode analysis
of the rhythm is shown in Figure 16.
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Figure 7: Barcodes for the two-dimensional time-delay embedding of “Abbott’s Brom-
ley Horn Dance” (see Figure 6) are considerably more interesting than those in Figure
5.
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individual pairs with larger distances).
The Dimension 1 barcodes (the second plot in Figure 7) shows the number of cir-

cles present at each value of ε, the Dimension 2 barcodes (the third plot) show the
number of hollow spheres as a function of ε, and the Dimension 3 barcodes (the bot-
tom plot) show the distribution of 4D holes in 4-space (do these have a name?). It
would be interesting to try and interpret these higher dimensional structures in terms
of the underlying piece of music. Other musical pieces (from the same library) have
qualitatively similar structures, though the details appear to differ in intriguing ways.

Longer temporal information can be incorporated by using longer time-delay em-
beddings. If a melody consists of a sequence of notes with fundamentals at f1, f2, f3, f4...,
these can be combined into triplets (a three-dimensional time-delay embedding) by
creating the sequence (f0, f1, f2), (f1, f2, f3), (f2, f3, f4), .... The distances between
such triplets can be calculated by adding the distances between the notes element-
wise using the pitch-class metric. Building a matrix of all such distances for “Abbott’s
Bromley Horn Dance” and calculating the barcodes gives Figure 8.

Again, it is straightforward to interpret the Dimension 0 barcodes as distances be-
tween triplets of notes in the melody. The higher dimensional structures are again
somewhat enigmatic, though presumably they indicate something about the pieces be-
ing analyzed.

3 Harmonic Barcodes and the Circle of Fifths
In order to look for the second major topological feature that should exist in musical
data (the circle of fifths of Figure 2) it is necessary to generalize the metric to con-
sider scalar harmony, multiple pitches considered simultaneously. Perhaps the most
straightforward generalization of the pitch-class metric is to add the (pitch-class) dis-
tances between all elements of the vectors, as was done for the time-delay embeddings
of the previous section. This metric distinguishes chord inversions: for instance, a C
major chord in root position (C-E-G) would be distant from a C major chord in third
position (G-C-E). While this is desirable in some musical situations, it is undesirable
when looking for structures that involve musical key, where (say) all C major chords
are identified irrespective of inversion and all C major scales are identified irrespective
of the order in which the pitches are listed. For example, the ascending C major scale
and the descendingC major scale are both the same entity, and the metric should reflect
this realm of musical perception. In terms of the levels of musical data (items (1)-(5)
on page 2), pitch-classes are appropriate for the symbolic note level data (item 3) while
the circle of fifths lies at the analytical level (item 4).

Accordingly, let f = (f1, f2, ...fn) and g = (g1, g2, ...gn) be two n-tuples, and
define the distance

dcc(f, g) = min
P

d(f, Pg) (3)

where P ranges over all possible permutation matrices and where d(·, ·) is the pitch-
class metric of (1)-(2) applied in an element-by-element fashion. This chord-class met-
ric calculates the (elementwise) pitch-class distance between f and all the permutations
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Figure 8: Barcodes for the three-dimensional time-delay embedding of “Abbott’s
Bromley Horn Dance” (see Figure 6) show a remarkable array of features that would
be great to understand. While the dimension 0 plot is straightforward (showing the
number of melodic triplets at each distance), the Dimension 1 and 2 plots contain a
fascinating collection of circles and higher dimensional analogs that persist over a non-
trivial range of ε.
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of g and hence is invariant with respect to chord and scale inversion; all reorderings of
the elements of f and g are placed in the same equivalence class.

To verify that this metric makes sense, consider a progression that moves around
the circle of fifths: C major to G major to D major etc, all the way back to F and
finally C. Inputting these seven-note sets into Plex and calculating the barcodes gives
Figure 9. Under this metric, scales that are a fifth apart (such as C major and G major)
have a distance of 0.08 and this explains the twelve lines that merge down to a single
connected set at ε = 0.08 in the Dimension 0 (top) plot. For 0.08 < ε < 0.33, the
Dimension 1 barcode shows a single persistent bar; this is the circle of fifths! There
are also some higher dimensional features for larger ε, but the exact meaning of these
is not clear.

Figure 9: Barcodes for a chord progression consisting of one cycle around the circle of
fifths. The circle of fifths is the persistent line from 0.08 < ε < 0.33 in the Dimension
1 plot.

The same metric can, of course, be applied to chord progressions. The chords from
the score of “Abbott’s Bromley Horn Dance” in Figure 6 were entered manually, and
the barcodes calculated in Figure 10. Since there are only four chords (Em, B, Am,
D), there is not much structure. The Dimension 0 barcode shows the distances between
the four chords, and the dimension 1 barcode only shows a circle for 0.33 < ε < 0.4.
It is also easy to add in temporal information using a time-delay embedding, and this
is done for the same piece at the chordal level in Figure 11. Here the triplets of chords
have some structure, with one circle when 0.25 < ε < 0.32 and three circles when
0.32 < ε < 0.4. It would be great to be able to interpret this kind of thing!

The final examples examine Bach’s Chorale No. 19, with musical score shown in
Figure 12.

A MIDI file of this piece, from [4], is parsed to extract the four voices. The dis-
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Figure 10: Barcodes for the chord progression from the score of “Abbott’s Bromley
Horn Dance” in Figure 6.

Figure 11: Barcodes for the dimension-three time-delay embedding of the chord pro-
gression from the score of “Abbott’s Bromley Horn Dance.”
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Figure 12: The standard MIDI version of Bach’s Chorale No. 19 is analyzed using the
ideas of persistent homology in Figures 13 and 14.
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tances between all four-part chords are calculated according to the chord-class metric
(3), and the results are input to the Plex software in order to draw the barcodes. This
is shown in Figure 13. The dimension 0 barcode shows a large number of chords that
are separated by ε = 0.08, a somewhat smaller number of chords that are separated by
a distance of ε = 0.16, and two chords separated by ε = 0.23. Above this value, all
chords merge into one connected component.

The dimension 1 barcode in Figure 13 shows Betti0 = 3 connected components
and one circle Betti1 = 1 for 0.16 < ε = 0.23, and this structure then changes to
Betti0 = 1 and Betti1 = 3 for 0.24 < ε = 0.33. Features such as these appear to
be unique identifiers of the particular pieces, meaning that other Bach Chorales from
the same data set have different Betti numbers that occur over different ranges of ε.
Finding the origin of such variations is an interesting challenge.

Figure 13: Barcodes for Bach’s Chorale No. 19.

Finally, Figure 14 shows the two-dimensional time-delay embedding of the Bach
Chorale, where the zero dimensional plot is interpretable directly in terms of the distri-
bution of chord pairs and how they cluster under the chord-class metric. Again, there
is a collection of persistent Betti1 circles.

4 Rhythmic Barcodes and the Necklace Notation
Rhythmic notations represent time via a spatial metaphor. In standard musical notation,
time is drawn linearly, though there are alternative notations such the necklace notation
of Figure 3 that display the circular nature of rhythmic patterns: each pass through
the cycle is one repetition of the rhythmic motif. The pitch-class metric (1)-(2) is not
immediately applicable to the task of measuring such cycles because pitch is perceived
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Figure 14: Barcodes for the two-dimensional time-delay embedding of Bach’s Chorale
No. 19.
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in a logarithmic fashion while time is not. Accordingly, the metric can be modified to
measure the distance between two times f and g as

d(f, g) = min(s, 1− s) where s = mod (|f − g|, 1), (4)

and where one unit of time represents one period of the rhythm. Let’s call this the
necklace metric.

The “Ewe” rhythm of Figure 3 is translated into the vector of time points

{0, 1
6
,
2
6
,

5
12
,

7
12
,
3
4
,
11
12
}. (5)

The distance is calculated between all of these time points under the necklace metric
(4), and this set of distances is input into the Plex software. The resulting barcodes are
shown in Figure 15.

Figure 15: Barcodes for the “standard rhythm” [5] of Figure 3 show the distribution
of time intervals in the rhythm in the top (dimension 0) plot and show the circular
structure with Betti0 = 1 and Betti1 = 1 in the bottom (dimension 1) plot.

The dimension 0 barcode shows the clustering of the points in time. In the sequence
(5), the minimum distance is 1

12 , and this occurs in two places, between the third and
fourth notes, and again between the 11th and the first notes. Accordingly, the barcode
shows two lines that vanish when ε reaches 0.08. Since the largest distance between
any two adjacent time points is 0.16, all the points merge into one cluster at ε = 0.16.
The dimension 1 barcode displays a persistent Betti1 bar from 0.16 < ε < 0.42. This
is the anticipated cycle around the necklace.

As might be expected, more complex rhythmic patterns and higher dimensional
embeddings yield more complex barcodes. For instance, the rhythm of the first 4 mea-
sures (a 24 beat cycle) of “Abbott’s Bromley Horn Dance” are shown in Figure 16.
As usual, the distribution of short and long intervals is shown in the dimension 0 bar-
code while the circular structure of the rhythm appears in the dimension 1 barcode for
0.08 < ε < 0.32. There are also interesting features to this rhythm in the two and three
dimensional barcodes.
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Figure 16: Barcodes for the first four measure of the traditional folk tune “Abbott’s
Bromley Horn Dance” of Figure 6 show the distribution of time intervals in the rhythm
in the top (dimension 0) plot and show the circular structure with Betti0 = 1 and
Betti1 = 1 in the second (dimension 1) plot. Higher dimensional features are also
readily apparent.
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5 Discussion
This paper argues that an investigation of the topological structures inherent in musical
data is feasible using the ideas of persistent homology. Besides demonstrating that well
known topological features can be derived from musical data sets, such analyses may
be useful in information retrieval, in analysis of musical pieces, and in applications
such as audio segmentation, melody recognition, and musical classification. Musical
data may be ideally suited as a vehicle for exploration of the techniques of persistent
homology because it is obvious (at least in retrospect) that there are significant topolog-
ical structures present. Three examples are given: the circle of notes shown in Figure
1, the circle of fifths shown in Figure 2, and the circular form of the rhythmic necklace
notation shown in Figure 3. These are readily identifiable in the barcodes derived from
musical data displayed in Figures 4, 9, and 15.

There are a number of issues raised that may lead in fruitful directions. Gener-
alizing the homological analysis to other musical domains such as spectral and audio
rate data would provide an important and nontrivial extension. For instance, harmonic
musical instruments (such as those that make sounds using strings or air columns) have
waveforms that are approximately periodic. Since periodic waves can be pictured as
a function on the circle, they should exhibit nontrivial topological structure. A basic
question is what metrics can be applied in these alternative domains since different
metrics may be able to provide different kinds of information. It is likely that the re-
quirement that the distance be given between all pairs of points in the data set is over-
restrictive. If this can be relaxed, it would allow the use of partial orderings, and might
be appropriate for submajorization [15]. This could be especially useful for perceptual
data that does not conform to a metric or where the information may be incomplete.

Even with barcodes at the symbolic (.mid) level, questions remain. It is not yet
clear what kind of geometric shapes correspond to the higher level Betti numbers in
the more complex barcodes (such as in Figures 7 and 8). From the musical perspective,
it is important to ask how such topological structures can be interpreted in terms of the
underlying musical piece. A good approach might be to evaluate a larger corpus of
melodies, harmonies, and or rhythms with the goal of fully deciphering such relation-
ships. Even if higher dimensional barcodes cannot be interpreted easily, they might be
useful in classification as a kind of signature or “feature vector” for subsequent pro-
cessing. Similarly, they might be useful in automatic segmentation to determine when
something has changed (for instance in the underlying scale or the underlying melodic
pattern).

There are other ways of incorporating temporal information than using the time-
delay embedding, and these might also help to provide a fuller topological analysis
that includes both pitch and rhythmic analyses simultaneously. Similarly, rhythmic
patterns often occur in hierarchies and it would be interesting to pursue the idea of
locating persistent homological structures from hierarchical musical data.
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