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Bursting in Adaptive Hybrids

WILLIAM A. SETHARES, C. RICHARD JOHNSON, JR., FeLLow, IEEE, AND CHARLES E. ROHRS, SENIOR MEMBER, IEEE

Abstract—Adaptive filtering techniques have been successfully applied
to attenuate echoes in long distance teleph tions. R tly, with
the increased ability to process signals cheaply, adaptive echo cancellation
is being employed on shorter telephone circuits. While echo cancelers do
tend to be effective on the shorter circuits, a new (and undesirable)
phenomena called bursting has been observed. Bursting is characterized
by long periods of successful echo attenuation alternating with short
periods of wildly oscillating signals. This paper studies bursting by
constructing a pair of simplified models of adaptive hybrid systems. The
models are analyzed when excited by various dc and sinusoidal inputs,
and the results are related back to the systems of interest, providing
insight into the fundamental sources of the bursting problem—an
imbalance of excitation and the enclosure of an adaptive filter in a
feedback loop. Simulations provide corroborating evidence.

1. INTRODUCTION
““Echo loves Narcissus.’’—Grecian graffiti

HE fundamental problem addressed by echo control in

telephone systems is illustrated in Fig. 1. Echoes originate
in the four to two wire conversion inside the hybrid circuit.
Inevitably, there is a mismatch in the impedance characteris-
tics of the two-wire loop and the balancing network of the
hybrid circuit, and some energy from the four wire received
signal is returned in the four-wire transmitted signal. The
application of adaptive filtering technology to remove a
significant proportion of this echo has been so successful that it
appears in recent introductory texts on adaptive filtering, e.g.,
[1] and [2], as prime evidence of the utility of adaptive
filtering. An adaptive hybrid incorporating echo cancellation
is illustrated in Fig. 2.

The generation of the echo can be modeled by passing the
received signal x; through a linear time invariant filter with a
finite impulse response 4 as in Fig. 3. Two signals are added
to the echo before the sum y; is returned to the adaptive echo
canceler. A ‘‘noise’’ signal 7, encompasses the part of the
echo which cannot be captured by the FIR filter representa-
tion, noise due to quantization in digital implementations, and
other small disturbances. The signal v, represents the speech
signal of the near end speaker which should be allowed to pass
through the hybrid and canceler undisturbed. The adaptive
hybrid attempts to remove the part of y, which is significantly
correlated with x; within the time windows set by the length of
the adaptive FIR filter.

Existing theory suggest certain operating conditions under
which such an adaptive echo canceler should perform well.
Theoretical investigations of adaptive filters demonstrate
desirable behavior (without their encasement in a feedback
loop such as in Fig. 4) when driven by *‘persistently exciting”’

Paper approved by the Editor for Channel Equalization of the IEEE
Communication Society. Manuscript received October 15, 1987; revised
April 12, 1988. This work was supported by the NSF under Grant DCI-
8608787. This paper was presented in part at the 1988 IFAC Workshop on
Robust Adaptive Control, August 1988.

W. A. Sethares is with the Department of Electrical and Computer
Engineering, University of Wisconsin, Madison, WI 53706.

C. R. Johnson, Jr., is with the School of Electrical Engineering, Cornell
University, Ithaca, NY 14853.

C. E. Rohrs is with Tellabs, Mishakowa, IN 46545,

IEEE Log Number 8929094.

4w transmit 4W receive

4:2
Hybrid
4Wire Loop

4W receive
Fig. 1.

2W Local

4W trensmit
The echo problem in telephone systems.

4W receive I_ XK
e
| Adaptive
Filter
| Tker —)l(yk”
o )
4w transmit . _ 4
Fig. 2. Basic adaptive hybrid.
4W receive
Xk :I/
h
noise ny
Yk near end
) speech Vk+1
4 transmit
Fig. 3. Model of the 4:2 hybrid (echo path).

inputs {3] and when disturbances are small. Thus, the adaptive
process benefits when the far-end input contains a frequency
range of components well-distributed enough to persistently
excite the adaptive system at the near end and the interfering
signals vy and 7, are small. These conditions are fairly closely
met in echo canceler implementations on long distance
connections. For example, sufficiently rich excitation is
usually provided by speech signals. In common practice,
double talk detectors turn off adaptation when vy is too large
relative to xi, and adaptive filter lengths are chosen (in part) to
keep 71y small.

One shortcoming of the standard analysis of adaptive
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systems when applied to this echo-cancellation problem is its
reliance on decorrelation of the ‘‘inputs’” from the ‘‘distur-
bances’’ [4]. In the echo cancellation context, this would
require that x be generated independently from v. Yet the 4W
receive (x) for the right-hand canceler of Fig. 1 invariably
contains a component which represents the residual echo of its
own 4W transmit ( ») reflected through the hybrid on the left-
hand side. Since the 4W transmit ( ) includes the speech (v) at
the right-hand canceler, there is a source of correlation
between x and a sequentially correlated v, which is essentially
due to a feedback of the transmitted signal. When the length of
the delay introduced in the four-wire path is long enough and
the signals themselves are broad-band enough, this source of
correlation is benign, since it is outside the time window of the
adaptive filter. The effects of the correlation, however,
become more pronounced as the length of the connection (and
hence the length of the delay)is decreased.

In an effort to further automate echo control and to comply
with prescribed echo loss requirements in connections to
common carriers, adaptive filters such as the adaptive hybrid
of Fig. 2 are being used in many short connections. Such short
connections do not provide the decorrelation delay of long
distance lines, so x and v can be significantly correlated,
especially when v is present and w is not. Given the possibility
of such situations, predictions of robust behavior cannot be
based on a persistent excitation and small disturbance combi-
nation [5] or on a near-decorrelation of the excitation and
disturbance [6]. One attempt to guarantee that the excitation is
adequate while the disturbance remains small is to use a
doubletalk detector which switches adaptation off (or on) when
the ratio of the energy in v to the energy in x rises above (or
falls below) a given threshold. There is, however, a danger in
the aggressive use of doubletalk detectors. One special feature
of the adaptive hybrid is that it operates in a closed, rather than
in an open-loop mode. The simple hybrid model of Fig. 4 may
be thought of as a feedback system with two inputs, 7 and w,
and two outputs, 7 and x. If v is large and the doubletalk
detector halts adaptation at a fixed 4, the closed-loop system
has the characteristic equation 1 — «a(h — A)z L. If |a(h —
R)| > 1, the resulting time-invariant feedback loop is
unstable. Imagine switching into a circuit with a nominal /4 but
a worst case («, k) pair. Conceivably, if the loop gain |a(h —
A)| > 1 and the doubletalk detector is immediately engaged by
the message traffic, this initial instability will not be corrected
before the circuit experiences sustained ‘‘singing.”’ To avoid
entrapment in a singing mode, doubletalk detectors should be
used conservatively.

What happens if doubletalk detectors are removed and x is
substantially correlated with v within the filter length window
of the adaptive FIR echo canceler? A new phenomenon, called
bursting, has been observed in experimental tests at Tellabs
Research Laboratory specifically designed to examine such
cases [7]. Long periods of close match between the output of
the adaptive filter and the echo path during which the echo
canceler appears to be functioning well, suddenly (and with no
apparent warning) degenerate into wild oscillation, which then
restabilizes just as suddenly. Real time laboratory tests at

Tellabs utilized a 20 tap adaptive hybrid at the near end of a
line and a simple (nonadaptive) hybrid at the far end. With
independent narrow-band modem signals of approximately
equal amplitude at each end, and with a nonadaptive echo
attenuation of about —6 dB, such bursts appeared intermit-
tently. When the transmission at the far end was quiescent, the
bursts appeared more frequently. It is this latter case of
extremely imbalanced excitation (with w zero and v nonzero)
in conjunction with the absence of doubletalk detectors that we
will exploit in order to explain this experimentally observed
bursting.

This paper characterizes the bursting (mis)behavior as long
periods of good echo attenuation (during which the parameters
of the adaptive mechanism slowly drift towards a setting
destabilizing the closed-loop system) alternating with brief
periods of rapid oscillation of signals throughout the system
(during which the adaptive mechanism quickly restabilizes).
Figs. 6-8 show such bursting in simple simulations of adaptive
hybrids.This bursting of the adaptive hybrid is closely related
to ‘‘bursting’’ in adaptive control [8] in that it is the result of
underexcitation and disturbances combined with the existence
of a feedback path around the adaptive mechanism. The
parameter drift of the quiescent phase to the parameter drift
observed in the underexcited LMS adaptive filter in [9]. The
recovery from the burst is closely related to the “‘self-
stabilization’’ property of [10] in which the adaptive algorithm
generates an exponentially growing output error (the burst)
which it then uses as a form of spectrally rich, self-generated
excitation in order to regain stability.

II. PROBLEM STATEMENT AND OVERVIEW

Models for studying the salient features of adaptive echo
cancelers on phone lines are diagrammed in Figs. 4 and 5. The
first supposes that a single parameter adaptive hybrid is
present at the near end of the line and that a simple
(nonadaptive) hybrid introduces an echo (a scaled unit delay)
at the far end. The second supposes that adaptive hybrids are
present at both ends of the phone line.

The adjustment of the adaptive parameters, represented by
the arrow through the % box in Fig. 4, uses the error y, — J;
(‘‘corrupted’’ by v;) to adjust the # parameter with the LMS
parameter update law

Frcsr =R+ pxeres 2.1
where u is the stepsize,
Tee1=Yis1— Frs1t Ve 2.2)
is the error sequence,
Yer1=hxy (2.3
is the near-end echo source,
Pieer1=hixi 2.4
is the output of the adaptive filter, and
Xy=arly+ Wy (2.5)
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" is the echo from the far end. In (2.5), « is a small positive Xk T T T T T
constant representing the attenuation of the echo and w; is the 08 F p
signal transmitted from the far end. Combining (2.1) to (2.5) | |
and introducing the parameter estimate error variable by = h
— Hy, produces 04 | 1

(2.6)
2.7

Typical operation of the system supposes that the near and
far end transmissions v, and w; alternate frequently, which
helps to ensure that the algorithm is adequately excited.
Indeed, if w, and v, are relatively uncorrelated and if wy is
persistent (so X, is persistent), then (2.6) is exponentially
stable and hence is_convergent to some ball about A = 0
(which implies that 4 is nearly equal to A, and that the echo is
suppressed). This is formalized in result 1 of Section 3.

The bursting phenomena appears when the transmission at
the far end is quiescent while the transmission at the near end
is active. This is first investigated under the simplifying
assumption that w, = 0 and v, = 1 for every k. The
parameters of the adaptive mechanism are shown to ‘‘wind
up’’ or ‘‘drift’’ until they are eventually pushed across the
stability boundary. Signal growth follows (this is the burst)
and then the systems restabilizes. This situation is analyzed in
result 2 and is simulated in Fig. 6, which shows large bursts
after about 2300 iterations of good behavior. The analysis and
simulations are then extended to consider the more realistic
situation when v, is sinusoidal, see result 3 and Fig. 7.

The second situation of interest is when there are adaptive
hybrids at both the near and far ends of the phone connections
as in Fig. 5, but the disparate excitation still occurs Defining
the parameter estimate errors 2, = A — Ayand & = g — &«
and following the logic of (2.1) to (2.7) shows that the
equations representing the system are

Fiesr =0 — px2) Ay — pxives

Xpo1= X+ gy + Wy

P == px}) b= pXvg sy (2.8)
Err1=(1 —pri)gc— ureWes i 2.9
Xiv1= 8T+ Wit 1 (2.10)
Fier1=ReXic+ Vs (2.11)

where vi(wy) is the input at the near (far) end. When £ is
small, the input at the far end provides excitation for the near
end adaptive algorithm (2.8). When A is small, the near-end
input provides excitation for the far end algorithm (2.9).
Paradoxically, the input at the near (far) end acts as a
disturbance to the algorithm at the near (far) field. The results
of Section IV show that when the adaptive filters are of
sufficient order to exactly match the dynamics of the echo
path, bursting will not occur. A more realistic scenario is to
suppose that the complexity of the echo source is greater than
the complexity of the adaptive mechanism. To model this
situation, suppose that the echo source at the far end is

U+1= 81Tkt &2Tk—1 (2.12)
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Fig. 6. Bursting in single end adaptive hybrid with constant near end

transmission. (a) Received signal. (b) Pole location.

while the adaptive estimator has only a single adjustable
parameter

Ziv1=8kr. (2.13)
Then (2.8) to (2.11) become
Bieor=(0— px) hie— pXievgs (2.14)
1=l —#’i)gk—ﬂgz"k"kﬁl (2.15)
Xes1=8klk+ 82Tk~ (2.16)
Fiev1=RiXi+ vk (2.17)

where w; has already been set to zero.

With w;, = 0 and vy a sinusoid, ry is ‘‘almost’’ a sinusoid.
The parameter érror at the far end rapidly converges to § =_
—g,. The signal x; then approaches —ry + 71y and A
becomes an integration of 7y, 1(—r¢ + ri_1). Over a period,
this.is a small constant, and so A is driven until the closed loop
system becomes unstable. This is the burst. The analysis is
formalized in Result 5.



794

1.2 T T T T T

038

0.4

[+]

Fig. 7. Bursting in single ended adaptive hybrid with sinusoidal near-end

transmission. (a) Received signal. (b) Pole location.

Thus, the undermodeled double active hybrid is susceptible
to the same bursting as the single adaptive hybrid. There are
two differences. First, bursting is an intrinsic property of the
single adaptive hybrid, while it is result of mismodeling in the
dual hybrid scenario. Second, the ‘‘integration’’ that leads to
bursting in the single hybrid case is driven by a sin?, while the
‘“integration’’ that causes bursting in the double hybrid
scenario is dependent on the phase difference between r; and
ry_1. Consequently, the drift of the parameters towards the
bursting instability is much slower in the double than in the
single hybrid situation. Similarly, smaller g; imply smaller x,
and the drift is even slower. Whereas the bursts in simulations
of the single adaptive hybrid tend to occur after a few thousand
iterations, the simulations of the double hybrid case with
mismodeling often do not burst until 45 000 iterations!

The practical consequence of the slower rate is that bursting
is less likely to occur in a finite time frame. The possibility of
bursting in real situations is thus reduced by close modeling of
the echo path an by bandlimiting the inputs, (which reduces the
phase difference that drives the drift) when there are adaptive
hybrids at both ends of the connection.

III. THE SINGLE ADAPTIVE HYBRID SYSTEM

This section examines the stability properties of a single
parameter adaptive echo canceler implemented at the near end
of a phone line. As in Fig. 4, the echo source at the far end is
modeled by a delayed and attenuated feedback of the transmit-
ted signal. The ‘‘normal’’ situation is when the transmissions
from both the near and far ends are persistent. Under fairly
mild excitation conditions, the adaptive echo canceler is
stable.

Result 1 (Stability of single adaptive hybrid with adequate
excitation): Consider the system (2.6)-(2.7) and suppose that
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wy is adequately excited (definition 2, Appendix A). If Ag is

small, then there exist v* and u* such that for every sequence

v, bounded by v*, and for every u € (0, u*), A converges to a

ball of radius 6(v*) about zero where 6(v*) — 0 as v* — 0.
Proof: See Appendix B.

This result shows that when w, is adequately excited, small
v imply that /4 almost matches 4, that is, that the echo is nearly
canceled and the system remains stable. In particular, it is
possible to guarantee that |« /| < 1 for every k by choice of
v*, which implies that the bursting behavior described below
cannot occur. The weakness of this result is that it gives no
precise measure of the magnitudes involved. The following
example explores this in one simple situation.

Example 1: Suppose wy, = w > 0and v, = v > O for all &.
If w > av, then (2.6)-(2.7) has a locally stable equilibrium at
A* = — v/wand x* = w.

Proof: See Appendix B.

Thinking of w as the degree of excitation, and v as the
power of the disturbance, this example suggests that the
relation w > av is somehow fundamental to the proper
operation of the adaptive hybrid. Indeed, when the inequality
is violated, then the ‘‘equilibrium’’ A* = —uv/w causes | ah*|
= |av/w| > 1, which implies that (2.7) is unstable. Such
instability is at the heart of the bursting phenomena.

Bursting arises when the far end of the phone line is
quiescent and the near end is active. The simplest way to
model this situation is to suppose that w, = 0 and v; = 1 for
every k (this certainly violates the hypothesis of Example 1).
The system (2.6)-(2.7) then becomes

3.1)
(3.2)

hea=(1 —#xi)};k‘ﬂxk
Xerr=alg+a,

which has no finite stationary points. Solving (3.1) for h* =
Ay = hyyields A* = — 1/x*. Plugging this into (3.2) gives
x* = 0. Thus, as x converges towards its ‘‘equilibrium’’ at O,
A tries to converge to its “‘equilibrium’’ at oo. Eventually, #
grows large enough to destablize (3.2). This is one interpreta-
tion of the origin of the bursting phenomenon.

Equations (3.1) and (3.2) are easily simulated. The values
of parameters in the simulation of Fig. 6 were chosen
conservatively. The echo attenuation factor is @ = 0.2, the
echo path at the near end is # = 0.1, and the estimator was
initialized at Ay = O with a stepsize of u = 2-5. Fig. 6(a)
shows the received signal x; versus time, while Fig. 6(b) plots
|ahy| versus time. The quantity afy, for satisfactorily slow
Ay, can be interpreted as the ‘‘instantaneous’’ pole of (3.2).
The first burst occurs shortly after 2300 iterations, and then
the bursts recur approximately every 600 iterations. Though
the qualitative features of the simulations are easily reproduc-
ible, the exact ‘‘frequency’’ and ‘‘magnitude’’ of the bursts
appears to be fairly sensitive to initial conditions, round-off
errors, and quantization errors.

The bursting cycle consists_of the following.

1) A long linear drift of A driven by the competing rate
phenomenon as in [9], coupled with a slow decay of x which
cause |ah| to grow larger than 1 (at time #,).

2) This instability causes x to expand rapidly, until x is
larger than « at time #,. The contraction term of the competing
rate lemma dominates, and A begins to shrink. This is
essentially the self stabilization of [10].

3) At time 4, |a/| becomes less than unity, restabilizing
(3.2), and finally,

4) x decays, until at time #,, the situation has returned to
step 1).

Due to the (relative) simplicity of (3.1)-(3.2), this bursting
cycle can actually be proven.

Result 2 (Bursting with constant disturbance): Consider the
system (3.1) and (3.2). Suppose there are constants e¢ and 7
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with /2 > ¢ > 0 such that

e < xpy < a— ¢
ii) ahy| < 1 — €, and
iii) A, < 0.

Then there is a u* such that for every ¢ € (0, u*), there exist
h < B < 13 < ty < oo such that

1) |alz,1| > 1 — € Xy < o — e (the drift),

2) {ahy,| > 1 + €, x, > o — € (the push across the
stability boundary),

3) lahy| < 1 — €, x;; > o (the burst), and

4) lah,| <1 — ¢ € < Xy < a — € (restabilization).

Proof: See Appendix B.

Although the bursting of Result 2 is recurrent, it does not
appear to be periodic, in the sense that the exact values of ¢;,
x;, and /; of one burst may be quite different from the ¢;, x;,
and #; of another burst. There may exist periodic orbits, but
they are unlikely to be stable, since stable orbits tend to show
up in simulations, and none were observed. An interesting
issue is whether the equation pair may actually exhibit chaotic
dynamics. One subtlety in the proof is that the value of u* is
chosen based on the size of the burst. Thus, although the result
guarantees recovery from the first burst, it does not necessar-
ily guarantee recovery from all subsequent bursts.

Perhaps the most serious limitation of Result 2 from a
practical viewpoint is that it assumes that the near-end
transmission is constant. A more realistic situation is to

suppose that v is sinusoidal. Accordingly, let v, = sin (wk).
The system (2.6)-(2.7) then becomes

Fisr= (1= px2) by — pxy sin (w(k + 1)) (3.3)

Xis1=ahexe+a sin (@(k+ 1)) (3.4

Simulations of (3.3)-(3.4) show bursting. With «, 4, u, and ho
as in the previous simulation and w = 0.05, Fig. 7(a) shows
the received signal x; while Fig. 7(b) shows the pole location.
The first burst occurs at about 4500 iterations, and the average
time between bursts is longer than in the previous case.
Fundamentally, however, the behavior is nearly indistinguish-
able from the bursting of (3.1)-(3.2). The differences are
fairly subtle; the long drift of 4 scallops instead of increasing
linearly, the drift of 4 is driven by the ‘‘balanced rate’’ lemma
(Lemma 2 of Appendix A) instead of by the competing rate
lemma, and x becomes a sine-like waveform instead of a long
slow decay. Nevertheless, the same basic sequence of events
occurs to cause bursting very similar to the bursting of Result
2. This can be proven with only slightly more effort.

Result 3 (Bursting with sinusoidal disturbance): Consider
the system (3.3) and (3.4) with w = 27/N and N > 4.
Suppose there are constants € and 4y with /2 » ¢ > 0 such
that 1), ii), iii) hold as in Result 2. Then there is a u* such that
for every u € (0, u*), thereare |, < 1, < #; < t; < o such
that 1), 2), 3), and 4) occur just as in Result 2.

Proof: See Appendix B.

Although the analysis of the bursting in Results 2 and 3 does
not extend directly to the situation where vy is characterized by
certain stochastic properties, it does provide a framework
from which to draw hypotheses. Suppose, for example, that vy
is an independent process. Then there is no correlation
between x; and vy, . This, the driving term in (4.3) is zero
mean, and drift is unlikely. On the other hand, if vy is
dependent, then x; and vy, are correlated. The competing rate
idea suggests that this would drive / towards instability. If this
drive is substantial, then bursting will result. Simulations with
white Gaussian v do not exhibit bursting, while situations with
colored Gaussian v (white noise passed through a single pole
filter) do exhibit the bursting effect.

One common modification to adaptive algorithms like LMS
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is the addition of leakage factor. In the linear case (with no
feedback of the error into the output), leakage provides a
safety net that guarantees exponential stability of the error
system. In the echo-cancellation application, however, leakage
cannot always prevent bursting. The parameter update with
leakage N € [0, 1) replaces (2.6) with

Freir=( = N—px2) by — pXpves 1+ A 3.5

For the special case vy = 1 and w;, = 0, the system (2.7) and
(3.5) has an equilibrium at

ANh — ux*

h*:m 3.6)
x*=1—La;?* . 3.7)

Since the denominator of (3.6) is positive, there are finite
solutions to (3.6)—(3.7) for small «. For properly sized A (such
that {ah*| < 1), bursting is unlikely. For leakage too small,
however, the continuity of (3.6)—(3.7) shows that the solution
must approach the solution for A = 0, which is x* = 0, A* =
oo, For such A, the equilibrium causes (2.7) to be unstable,
and bursting will result. Simulations verify that properly
scaled N inhibit bursting, while \ too small allow bursting to
occur.

IV. THE DOUBLE ADAPTIVE HYBRID

When both ends of a phone line are equipped with an
adaptive echo canceler as in Fig. 5, the behavior of the system
is described by (2.8)-(2.11). If both inputs w; and v; are
adequately excited, then r, and x, are adequately excited
(unless w; and v, are related in a very singular way).
Arguments similar to those used to show the stability of the
adequately excited single adaptive hybrid system show that the
parameter estimate errors g and A become small. An added
subtlety arises in the symmetry of the problem — v, must be
‘“small’’ as a disturbance term in (2.8), yet must be ‘‘large’’ as
the principle ingredient of the persistent signal ry in (2.9).
Similarly, w; must be ‘‘small’’ as a disturbance term in (2.9),
must be ‘‘large’’ as the principle ingredient of the persistent
signal x; in (2.8). A precise untangling requires a careful
juggling of the signals vy and w,. A more comprehensive
treatment will doubtless need to include frequency effects. See
[14] for a discussion.

The situation which led to bursting in the single adaptive
hybrid was when the far transmitter was silent. Interestingly,
the same conditions do not destabilize the double hybrid. With
wy set to zero to model the quiescent end, (2.8)-(2.11) become

Ek+l=(1_#xi)ﬁk_ﬂxkvk+l @.1n
=1 —-pr)é, “4.2)
where
Xis1=Eulk 4.3)
rk+l=};kxk+vk+1- 4.4)

The key to the analysis of (4.1)-(4.4) is to note that if v is
adequately excited, then r, is adequately excited, and £ — 0
exponentially. Thus the echo at the far end is canceled. This
implies that x, — 0 exponentially and hence that the update of
A in (4.1) ceases. In this ideal case, the double adaptive hybrid
will not burst.

Result 4 (Stability of underexcited double adaptive hybrid
with exact matching): Consider the system (4.1)-(4.4) and
suppose that vy is adequately exciting. Then there are 8y, &,
and u* such that for all | Ay| < 8, || < 8,, and u € (0, u*)
imply that &, — O exponentially and A, — A* as k — oo.

Proof: See [13].



796

0.2 |

ol

-0.1 |
-02 1
1 i L 1 i
o 20000 40000 60000

(®

Bursting in double ended adaptive hybrid with mismodeling. (a)
Received signal. (b) Parameter estimate.

Fig. 8.

The system (4.1)-(4.4) has an equilibrium at § = 0 and any
value of 4. The exact value A* attained depends on the
particular sequence v and the starting errors Ay and §,. The
apparent implication of this result is that adaptive echo
cancelers do not burst when used at both ends of the phone
line. In the setup of (4.1)-(4.4), the complexity of the adaptive
filter is sufficient to exactly match the dynamics of the
assumed echo channel. This idealization is unlikely in prac-
tice, since real communication channels are subject to distrib-
uted effects, small nonlinearities, environmental disturbances,
etc.

Suppose that the echo path can be modeled as a second-order
moving average with parameters g; and g, while the adaptive
filter has only a single adjustable parameter g;. If the input at
the near end is a sinusoid v = sin (wk), then (4.1)-(4.4)

become
i 1=(1 = ux2) by — pxy sin (w(k + 1)) (4.5)
Gerr1=(1—pri) e~ pgariri, 4.6)
Xy 1 =€l + 82Tk—1 4.7
ey 1 = Rexg+ sin (w(k + 1)) 4.8)

where &, = g — &.

Unlike the previous analysis, x; does not decay exponen-
tially to zero. In fact, since vy is a sinusoid, 7 (and hence x;)
are ‘‘almost’’ sinusoidal due to the slow time variation of g
and A relanve to the frequency of the sinusoid. Thus r;ry_; is
“‘almost’” sin? as in the proof of Result 3, and § converges to a
small region about —g,. The parameter estimate error A4 is
then simply an integration of (ry_; — r¢_;) 7.1, which imparts
a slow drift to A, ultimately destabilizing (4.8) in the
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characteristic bursting manner. Simulations are presented in
F1g8w1thh—07 g =078 = 0.49, v = 0.05, u =
2-%,and g, = hy = 0. The analysis assumes that h, and g, are
sufﬁc1ently small, and then shows that the ﬁrst burst will
invariably occur. Combining (4.7) and (4.8) shows that the
““closed-loop system’’ (from vy to ry) is
Fev1=Me8r1Fo1+ R+ vy 4.9

Result 5 (Bursting of underexcited double adaptive hybrid
with mismodeling): Consider the system (4.4)—(4.8) with w =
2x/N and N » 4. Pick e > 0 small enough so that —e < A
< Oand g, < e imply the stability of (4.9). Then there is a u*
and a k such that for every p € (0, u*), the closed loop system
(4.9) becomes unstable.

Proof: See [13].

V. CONCLUSION

Bursting was observed in laboratory tests of adaptive
hybrids. This bursting was reproduced in simulations in a
simplified setting which was then analyzed. The kernel of the
bursting phenomenon in echo cancellation lies in a driving
term which causes the parameter estimates of the adaptive
hybrid to drift linearly, until they eventually destabilize the
closed-loop system, causing the burst. The contractive power
of the parameter estimator then dominates and the system is
restabilized. Following restabilization, drift begins again and
the bursting cycle repeats. The structural source of the
problem lies in the use of an adaptive filter in a feedback
setting.

What can be done to protect echo cancelers from such
bursting? Several points deserve comment.

1) The single adaptive hybrid appears to be poorly condi-
tioned in certain operating situations. If no far-end signal is
present, the near-end signal is narrow-band, the echo path
delay is short, and a doubletalk detector is not present,
parameter drift will almost certainly occur. If such an
operating situation persists long enough, bursting can occur
(Results 2 and 3). Adequate excitation by the input signal at
the far end of the line can avert this situation (Result 1).

2) The underexcited double adaptive system with exact
matching of the dynamics of the echo path and the adaptive
filter cannot burst (Result 4), while even a sight mismatch
allows bursting (Result 5).

3) The driving term in the bursting of the double adaptive
system has two components: a magnitude term that reflects the
quantity of the mismatch, and a phase term that grows larger at
higher frequencies. In a practical sense, then, bursting will be
less likely to occur in any finite time window if the adaptive
filter can closely match the dynamics of the echo path, and if
the inputs are bandlimited.

4) Since the heart of the bursting lies in the drift phase,
algorithm modifications which are intended to combat drift
may decrease the likelihood of bursting. Leakage was briefly
examined in a simple example and in simulations. Properly
sized leakage appears to protect against bursting, while
leakage which is too small did not prevent bursting.

5) What does it mean to persistently (or adequately) excite a
pair of adaptive filters when the ‘‘input’’ to one is the
““disturbance’’ to another? The same signal must be ‘‘large’’
as a component of the excitation and ‘‘small’’ as a component
of the disturbance. Unlike the single adaptive filter case, there
is no obvious ‘‘homogeneous’’ system. This raises a serious
question about our current understanding of persistence of
excitation of even the simplest adaptive algorithm when used
in a nonstandard (feedback) setting.

APPENDIX A

These lemmas are used in Appendix B to prove the results of
the previous sections.
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Lemma 1: (The competing rate lemma): Consider the
recursion

g1 =1 —pb})ay—pb; (A.1)

with by € [-B, Bland 0 < u < 1/B%.
a) Suppose there is an € > 0 such that [a;be| > 1 + e.
Then

— U c |bk|.

b) Suppose there is an € > 0 such that |a;bi| < 1 — € and
sgn (ax) = —sgn (by). Then

laii1|<|a

|ak+1|2|ak|+u (S |bk|.

Proof: Part a) is proven by writing out the four cases
where a; > 0 while by > 0, a; > 0 while b, < 0, a; <
while b; > 0, and a; < 0 while b; < 0. In all four cases, the
magnitude of a; decreases, and statement a) follows. For part
b) there are only two cases.

Remarks: Equation (A.1) should be pictured as having two
terms. Part a) provides conditions under which the contraction
term 1 — ybi dominates the driving term — uby, while part b)
provides conditions under which the driving term dominates
the contraction terms. Parts a) and b) can be easily iterated.

a’) Suppose there is an € > O such that [@;b;] > 1 + € for
every | € [k, k + f]. Then

i=k+t
|ak+t+1|5|ak|_l»" < E

i=k

b’) Suppose there is an € > 0 such that |a;b;| < 1 — € for
every i € [k, k + t]. Then

i=k+t
|ak+1+1|2‘ak|+” € 2

i=k

The next results require several definitions:

Definition 1: Let a, be the state of a system with
equilibrium ¢* = 0, and suppose that ¥ € (0, 1) is such that
|ars, — a*| < v |ax — a*| for every k. Then the system is
said to be exponentially asymptotically stable (EAS) and a;
is said to converge exponentially to the equilibrium a*.

Definition 2: Let ¢; be a bounded scalar sequence, and
suppose there are positive #, c*, and ¢ such that | ¢,| > c* for
every k, and

|ck| >c * for some k € [j, j+1] for every j. (A.2)
Then ¢, is said to be adequately excited. Note that this is a
special case (the one-dimensional version) of the more general
definition of persistence of excitation in [3].

Remark: We have decided to use the term ‘‘adequate’’
instead of ‘‘persistent’” excitation because we believe the use
of the latter term is likely to cause considerable confusion in
the echo cancellation application. It is well known that the
parameter estimates of the LMS adaptive filter converge to a
small ball about the desired value when the input is persistently
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which persistently exciting inputs to the standard LMS
algorithm do not guarantee any form of good behavior. A
more satisfying definition of persistence of excitation for this
problem would involve both external inputs v; and wy, as
suggested by Example 1.

Lemma 2: (The balanced rate lemma): Consider the
recursion

ak+1=(1—#abi)ak—#5bi (A.3)

with o and 8 positive integers. Suppose also that b is bounded
by B and is adequately excited and that p is a positive stepsize
less than 2/aB,. Then the sequence a; converges exponentially
to the constant — (3/A.

Proof: See [13]. O

Remark: Note that the driving term in (A.3) contains bf(
instead of b, as in (A.1). The name of the lemma arises since
the ‘‘rate’” of the b2 in the contraction term balances the
“rate’’ of the b2 in the driving term, causing (A.3) to
converge.

If the input to a linear time invariant (strictly) minimum
phase system is persistently excited, then the output of that
system is also persistently excited. See [S] for a precise
statement. The next lemma shows that the output is adequately
excited, even if the plant is allowed to vary, provided that the
variation is slow enough and that the input is adequately
excited.

Lemma 3: (The slow variation lemma): Consider the
following time varying system:

1 =brag+cy (A4)
and suppose that the related frozen systems
ak+1=bpak+ck (A.5)

are EAS for every p uniformly in p. If ¢, is adequately excited
as in (A.2) and if p € py|b,s; — nb,| is small enough for
some finite pg, then @, is adequately exciting.

Proof: Obtained by combining the proof of Lemma 5.2
of chapter 5 of [5] with the slow variation assumption. O

APPENDIX B

Proof of Result 1: The slow variation excitation lemma
applied to (2.7) [which holds for small u], shows that if w; is
adequately excited, v* is small enough, and hy is small, then x;
will be adequately excited. This implies that the homogeneous
part of (2.6) is exponentially asymptotlcally stable, and hence
that for small enough v*, /4 remains small. As v* approaches
zero, the perturbation to the homogeneous system approaches
zero, and hence A approaches zero. O

Proof of Example 1: The system (2.6) and (2.7) can be
linearized about its equilibrium at —cv/w, w is

1
1—puwlu <1 ———> +2uw
A= w

v
oW ——
w

which has eigenvalues at

1 1
3 {—uw—lﬁi\/l+ZB+BZ—2;LW-—2;J.ow—4awv (l——>—80mw2}
w

exciting. In the system (2.6)-(2.7), however, x; (the input) is
persistently exiting for LMS, yet the parameter estimates
simply drift until | /| becomes larger than 1, no matter what
the actual value of the desired parameter 4. The reason for this
behavior is the feedback path that returns the error as the
input. The echo canceler is, therefore, a problem setting in

where 8 = av/w < 1. For u small enough so that uw < 1,
the largest eigenvalue can be bounded above by 1 — 1/2uw,
since «, 8, w, and v are all positive. Thus, A is stable, and the
result follows. a
Proof of Result 2: The proof is divided into four sections
corresponding to 1)-4) of the statement of the result.
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1) The hypothesis i), ii), and iii) imply that | x, /| < 1 —
€. Due to the small stepsize assumption, the variation in 4 is
slow compared to the time variation in x;. Thus,

* +
e ol 4
1+ [ahto+k|

which e, is a sum of two parts, a decaying exponential due to
initial conditions, and an O(y) part from the variation in A.
This shows that x,,, ; remains within the bounds i) and implies
that the driving term of the competing rate lemma applies.
From b’) of Appendix A,

(B.1)

Xeg+k=

totk

|il~to+k+1|2|”{toi+“ € 2 |xi|~

i=tg

3B.2)

Thus, there is a finite #, such that |af, | < 1 — e.

2) Since x is generated from (3.2), and since the steady-
state value of (3.2) forah = —lis /2, by, € [-1 — e, —1
+ €] implies that x,, is within o(e) of /2. Thus, |x, A, | is
within o(e) of |k, /2| which is approximately 1/2. Hence,
the driving term of the competing rate lemma continues to
dominate the behavior of 7, implying that A continues to grow.
Thus, there is a k such that ok, | > 1 + €. For all such k,
(3.2) is unstable, and the magnitude of x increases exponen-
tially. Thus, there is a finite #, such that

lah,|>1+e (B.3)
while
B.4)

3) Note that |x,2k| remains larger than « as long as (B.3)
holds. Hence, part @’) of the competing rate lemma applies,
which shows that

X,2>Oz.

ty+k

1};12+k+l|5“;12|—'”' € E |xi|’

i=ty

(B.5)

which implies that there is a #; such that | x,;| > o with |/,
< 1 — e. For the contraction term of the competing rate
lemma to apply, it is necessary that |1 — pux2| < 1 for every
k. How large can x grow? Let | ok, | = B. Then |x,,,| can be
bounded by (o + 8)B* for some 6 > 0, for every k € (£,, t3).
Thus, a (liberal) overbound on the maximum value of x is (o
+ 8)B“~%2), and u can be chosen appropriately small.

4) After 13, (3.2) is decaying exponentially, which implies
that there is a 7y such thate < |x,| < o — € while | &, | < 1
— e. This brings the situation back to step 1). O

Proof of Result 3: 1) If h were fixed, with |af| < 1,
(3.4) would be a stable linear system, and x; would converge
exponentially to a sinusoid with frequency w, gain @, and
phase shift ¢. Hypotheses i), ii), and iii) combined with the
small stepsize assumption show that (3.4) is actually a very
slowly varying exponentially stable system. Thus, x; is within
O(p) of a sinusoid of frequency w with a phase shift of ¢.

X, =f3 sin (wk + @)+ e, (B.6)

where e, is again the sum of an O(u) term and a decaying
exponential as in (B.1). Note that 8 and ¢ are dependent on w
and ok, and that 8 < « for # < 0. Equation (3.3) can be
rewritten

hesr=(1 — uB? sin? (wk + @) A,

— B sin (wk+ ¢) sin (w(k+1)). (B.7)
Let y2 = sin? (wk + ¢) and
di=sin? (wk + ¢) —sin (wk + ¢) sin (w(k+1)+¢). (B.8)
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Then (B.7) is

Aisr= (1= pB2y2) hi— pBy} + uBds. B.9)

The homogeneous part of (B.9) [without the ufBd; term] is
precisely of the form (A.3). Hence, the balanced rate lemma
applies, showing that the homogeneous part of (B.9) con-
verges exponentially to —1/8. The perturbation term d; can

be bounded
1 il in (27 B.10
—cos N [} sin ~ —¢ (B.10)

which is small for large N and small ¢. Thus, (B.9) is
exponentially stable, and 4 converges to a small ball about
—1/B8. But 8 < «, and hence —a/B < —1, which implies
that there is a #, such that |ah, | < 1 — e

2) Consider ah;, € [—1 — €, —1 + €]. x; is generated
from (3.4), which can be iterated and approximated by

dy< +

k
Xy k= (ahy )ox, + o 3 (ahy,)* sin (wk). (B.11)

Jj=1

In the timescale of this step, sin (wk) will be roughly constant
for small w, denote this value by s. Since the steady-state value
of B for h = —11is a/2, (B.11) can be approximated by

s L1 .
Xiex=g hétas 3 Ak (B.12)

j=1

where & = oh,,. Since T%_ h*~/ = hk — 1/h — 1, X, 4k is
approximately os/2 while # € [-1 — ¢, —1 + ¢]. Thus,
(3.3)is

2

~ ~ o [0 4
htl+k+1=htl+k (1_/452'Z>_l4525 (B.13)

which is subject to the competing rate phenomenon exactly as
in step 2) of Result 3. Hence, there is a ¢, such that |ozl7,2| > 1
+ eand x;, > a.

(3) and (4) occur exactly as in steps 3) and 4) of Result 3.
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