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Performance Analysis of Blind Adaptive Phase Offset
Correction Based on Dispersion Minimization
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Abstract—This paper presents an analysis of the performance
and behavior of a blind adaptive carrier phase offset recovery
scheme based on dispersion minimization (DM). The algorithm,
called the DM-derotator, is a kind of simple equalizer that attempts
to correct the carrier phase offset by minimizing the dispersion of
the projection of the real part of the (complex) data signal. The
recent application of this algorithm to digital broadcasting signals
motivates our analysis. This paper classifies the stationary points
of the DM-derotator for a variety of source signals including
digital vestigial side band (VSB) and quadrature amplitude mod-
ulation (QAM) and discusses initialization strategies. The analysis
is extended to a variety of situations including i) its behavior in the
presence of intersymbol interference, ii) its behavior when there
is statistical dependence between the in-phase and quadrature
components, and iii) its tracking ability.

Index Terms—Adaptive receiver design, blind adaptive al-
gorithm, carrier phase offset, constant modulus, dispersion
minimization.

I. INTRODUCTION

I N modern communication systems, the demand for high
data rates over bandlimited channels suggests a preference

for blind equalization over training sequence-based equaliza-
tion schemes. However, in blind equalization schemes, there
is, in general, a residual phase ambiguity [14], [20] in the
received signal due to the phase distortion of a bandlimited
channel or due to carrier phase error [18]. For two-dimensional
(2-D) constellations, this phase offset causes a rotation of the
equalizer output, which hinders the switch to decision-directed
(DD) adaptation. Furthermore, for VSB signals, which have
been chosen for digital high-definition TV (HDTV) in the
United States [1], the residual phase offset introduces undesir-
able distortion to the equalizer input signals and can degrade
equalizer performance (Section III-B).

Several blind algorithms based on the decision directed ap-
proach have been proposed in [15] and [16]. However, reli-
able decision feedback (which assures convergence of the al-
gorithm) is not always available, especially at the synchroniza-
tion stage. A blind adaptive carrier phase offset correction algo-
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rithm, which does not rely on decision feedback, has been men-
tioned by Bellini in [9, ch. 2] and independently proposed in [3]
and [21]. This algorithm minimizes the dispersion of the real
component of the received signal in contrast to the MSE-based
minimization of decision feedback schemes. The method can
be used either before or after equalization, as required by the
system. Section II introduces the DM-derotator and analyzes
its local minima and local maxima by studying the cost func-
tion in an ideal situation. In Section III, the DM-derotator is
detailed for quadrature amplitude modulation (QAM) and ves-
tigial side band (VSB) sources, and several examples are given.
Section IV studies the behavior of the DM-derotator in less ideal
situations, i.e., in the presence of intersymbol interference (ISI),
and when there is statistical dependence between the in-phase
and quadrature components. In Section V, the tracking ability
of the DM-derotator is investigated using a first-order approxi-
mation of a linearly time-varying phase offset. The final section
concludes.

II. DM-DEROTATOR

This section describes the blind phase correction algorithm
based on dispersion minimization. The analysis requires certain
assumptions under which the cost function of the algorithm can
be derived and its stationary points classified. Cases that violate
these assumptions are studied in Section IV. A variant of the al-
gorithm, which utilizes a single complex tap, is also considered
at the end of this section.

A. DM-Derotator Algorithm

Suppose that a complex random sequence drawn from
a finite constellation with known statistical properties suffers
from an unknown constant phase offset in the presence of
white complex Gaussian noise . Consider the measured
output

(1)

In order to estimate and directly remove this offset, consider
the single tap derotator shown in Fig. 1, where represents an
estimate of , and the arrow represents a way of iteratively up-
dating . This can be viewed as the problem of equalizing a
scalar channel, but conventional blind equalization techniques
are not feasible due to their phase ambiguity. Instead, we focus
on the projection of the real part (or, equivalently, the imaginary
part) of the signal .

In the absence of noise and ISI, and if were exactly equal
to , then the projection of onto the real axis would consist
of a collection of points at the (real part of the) symbol values
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Fig. 1. One tap derotator.

defined by the constellation from which is drawn. In the pres-
ence of noise and ISI, the projection will consist of a number of
clusters centered at these symbol values. When is somewhat
different from , the clusters widen. Thus, a sensible criterion
for estimating is to try and minimize the dispersion of the pro-
jection of the constellation onto the real axis. Formally, consider
the cost function, which is named the dispersion minimization
derotator (DMD) cost function

(2)

where (which will be referred to as the DMD constant) is
a real constant, and denotes the real projection operator
(i.e., ). For many signal constellations, the that
minimizes will be equal to , but for some signal constel-
lations, the dispersion can be made even smaller by projecting
onto a line other than the real axis. For example, Section IV-B
shows that the V29 signal constellation minimizes when

.
Using a stochastic gradient algorithm [8] to minimize (2)

gives the DM-derotator algorithm

(3)

which exploits the fact that ,
where denotes projection onto the imaginary axis, i.e.,

.
This algorithm has been suggested in [9] for QAM, and simu-

lations in [19] indicate good performance, even in the presence
of large phase offsets. A variant of this algorithm minimizing
the constant modulus cost functions for the real and the imagi-
nary components of the equalizer output simultaneously as well
as separately was presented in [12]. The application to VSB sig-
nals is considered in [3] and [21]. Together, these studies moti-
vate a more complete analysis.

B. Terminology and Assumptions

One of the most revealing ways to understand the behavior of
an algorithm such as (3) is to study the cost function (or error
surface) over which the algorithm evolves. In order to describe
the cost function efficiently, some terminology is required.

For a random sequence , the kurtosis of the source, which
is denoted by , is

(4)

This quantity can be roughly viewed as a measure of the
“Gaussian-ness” of the source, and it has been shown to be
important in blind identification/equalization schemes based
on higher order statistics [2], [5]. The deviation of the kurtosis

of a source from that of a Gaussian source kurtosis will be
denoted by , i.e.,

(5)

For a real source, . Finally, let and
denote the real part and the imaginary part of the sequence ,
respectively.

(6)

This paper examines the DM-derotator cost function (2) based
on the following assumptions, which are commonly accepted as
appropriate for communication systems.

Assumption 1:

i) and are zero-mean and sub-Gaussian, i.e.,
their kurtoses and are each less than 3.

ii) The noise is complex circular white Gaussian.
iii) The source and the noise are independent.

C. Analysis of the Cost Function in an Ideal Scenario

A variety of constellation sets are used in communication sys-
tems to transmit information, and the transmitted signals usu-
ally suffer from multipath interference. Depending on the con-
stellation and the multipath channel, the statistical properties of
the received signals change, and the DM-derotator cost func-
tion may behave differently. Since an exhaustive study of the
cost function for each situation would be impractical, this sec-
tion considers a class of ideal situations that simplify the anal-
ysis. Certain nonideal situations of practical significance will be
treated separately in the following sections. The assumptions re-
quired in this section are as follows.

Assumption 2 (Ideal Situation):

i) The second cross-moment is separable, i.e.,

ii) Most cross-moments vanish

if and

iii) The variance of the real and imaginary parts of the signal
are the same

In the absence of ISI, most common constellations (such as
-QAM and VSB signals) satisfy the above assumptions (e.g.,

see Appendix A). Under these assumptions, the DM-derotator
cost function has well-defined maxima and minima.

Property (Stationary Points of the DMD): Let denote the
parameter error

between the unknown constant phase and the DM-derotator
parameter . Under Assumptions 1 and 2, the DMD cost func-
tion (2) has the following stationary points:

Local Minima and

Local Maxima
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Proof: The cost function (2) can be rewritten as

Because is complex circular Gaussian, its statistics are the
same as those of . Straightforward calculations show that

(7)

where
, and . The first and the

second derivatives of are given as

Since , at the stationary points with
, the second derivative of is always neg-

ative. This shows that they are local maxima and, consequently,
that are local minima.

The result of Property 1 reveals several convergence be-
haviors of this algorithm. First of all, this algorithm inherits a
general property of one-dimensional (1-D) gradient systems
that have the same number of local minima and local maxima
and no saddle points. Usually, stationary points other than
local minima in a gradient system significantly slow down the
convergence speed, especially in a multimodal system such as
CMA where the number of saddle points grows exponentially
as the parameter dimension increases [13], [14]. For the 1-D
DM-derotator, the cost function can be globally approximated
with a piece-wise quartic function partitioned by local maxima
(Fig. 2). The convergence speed to the four local minima is
slowed only at the vicinity of the four local maxima, and in the
rest of the regions, the convergence behavior is governed by the
existing analysis on the local convergence of CMA [7], which
is similar to the LMS convergence behavior. Since the vicinity
of the local maxima is fairy small in the whole parameter space,
DMD has an LMS-like local convergence behavior in general.
The step size needs to be set to optimize the tradeoff between
convergence speed and steady-state error variance.

Second, the DM-derotator is multimodal. The DMD cost
function yields a desired local minimum at but with
a possible ambiguity of 90 . For some sources for which
rotationally invariant coding schemes [18] are available (such
as -QAM), this 90 ambiguity is irrelevant, but for other
source signals (such as VSB), it may cause undesirable local
minima.

Third, like a CMA equalizer [14], the performance of this
algorithm is dependent on the kurtosis of the source. Notice that
as in (7), the cost function becomes flat, which
implies that the performance of the DM-derotator degrades as
the source approaches Gaussian.

Fig. 2. Cost function of DM-derotator for QAM and VSB. (a) 4-QAM, (b)
8-VSB.

Although the 1–D nature of DMD overcomes the slow con-
vergence issues in most blind estimation/adaptation algorithms,
the multimodality issue needs to be further discussed, especially
for VSB signals. The next sections focus on the DM cost func-
tion for VSB and the dynamic changes of DMD when the as-
sumptions for the ideal situation break down. For simplicity of
analysis, notice that the DMD constant contributes only to the
constant term in the DMD cost function (7), and hence, it does
not change the dynamics of the cost function. Thus, can be
arbitrarily chosen. In practice, should be chosen to minimize
the excess mean squared error of the cost function, but in sub-
sequent sections, will be set to 0.

D. DMD without Norm Constraint

The DM-derotator, by adjusting only the value of in ,
essentially constrains the magnitude of the tap to unity. This
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causes the update term to require the calculation of trigono-
metric functions, which involves some implementation com-
plexity. This constraint can be relaxed by using a single com-
plex tap update with the cost function

(8)

which leads to the stochastic descent algorithm

(9)

For the DMD without norm constraint, the DMD constant
must now be adjusted to keep the power gain of the derotator
at unity. In conventional CMA equalizers, setting
achieves unity output power [14]. For the DM-derotator, can
be set to either or . When

, i.e., the real and the imaginary parts are not statistically
symmetric, the choice of is roughly equivalent to setting a
preference between the real and the imaginary directions. This
will be discussed later.

Since the gradient system is identical regardless of the choice
of the coordinate system, the cost function can be analyzed in
polar coordinates by letting . Straightforward calcula-
tions yield

Notice that in the angular direction, the cost function has the
same local minima and local maxima as in Property 1. In the ra-
dial direction, there is a local maximum at and a minima
surface given by the equation at the bottom of the page. By let-
ting (provided that the real part is
the reference direction), radial values can be specified for each
local minimum given in Property 1. Assuming (i.e., a
normalized source)

for .

for .

(10)

Notice that in the absence of noise, is given by

for .

for .

Thus, the gain at , and at , is unity as desired,
whereas the gain at , and at , is the ratio of the

kurtoses between the real and the imaginary parts. The different
values of for different local minima can be used to discern
the (possibly undesirable) convergence to the local minima at

by monitoring , as shown in Section
III-B.

III. EXAMPLES

A. For -QAM Signals

For an -QAM source, the real and the imaginary compo-
nents are independent with identical distributions. Thus, in the
absence of ISI, the received -QAM signal satisfies Assump-
tion 2. With the DMD constant , the cost function in (7)
simplifies to

(11)

which is plotted in Fig. 2(a). Notice that the cost surface is sym-
metric about due to the statistical homogeneity of the real
and the imaginary components of the QAM signal.

B. For Digital VSB Signals

For digital VSB sources, the real component is an inde-
pendent and identically distributed (i.i.d.) PAM source, and
the complex component is generated by the discrete Hilbert
transform of the real component, i.e.,

(12)

and

where is the discrete Hilbert transform filter given explic-
itly in (27) of Appendix A. The relation between the output se-
quence and the source sequence is represented by a
noncasual IIR linear system

(13)

where s, y, and h denote the sequence of source, output, and
Hilbert transform filters in vector form, denotes the convo-
lution operator, and the time indices have been suppressed for
notational simplicity. Since , the phase offset can be
corrected by a noncasual IIR filter based on

(14)

When ISI is present, channel responses are incorporated in (13)
to give

(15)
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where and denote the FIR channel responses of the real
and the imaginary parts, respectively. Thus, a blind equalization
algorithm not only attempts to equalize the channel response
but also attempts to compensate for the phase distortion by
approximating the phase offset inversion filter (14). While
this may seem desirable, in practice, this phase correction
property of the equalizer can be a liability. First of all, a large
number of taps are utilized to compensate for what is in reality
a single parameter distortion. Too many taps will inevitably
degrade the steady-state performance of the equalizer and
slow convergence. Second, features of the required equalizer
impulse response such as sparsity cannot be exploited due to
the influence of the Hilbert transform filter. This can be sig-
nificant in applications such as HDTV, where long equalizers
are used [6]. Finally, for a decision feedback equalizer (DFE),
the convolution of the Hilbert transform filter with the channel
will tend to increase the magnitude of the DFE taps and may
result in increased error propagation. Therefore, implementing
a blind phase recovery algorithm before equalization is highly
desirable for digital VSB signals.

Although the real component and the imaginary com-
ponent of digital VSB signals are statistically dependent,
due to the anti-symmetry of the discrete Hilbert transform filter
and the i.i.d. property of the real component, they satisfy all con-
ditions in Assumption 2 in the absence of ISI. Furthermore, the
kurtosis of the imaginary component is given by

(16)

(A proof of the above statements regarding the statistical prop-
erties of the digital VSB signal is given in Appendix A.) Con-
sequently

This asymmetry of source statistics between the real and the
imaginary components induces an asymmetry in the cost func-
tion, as shown in Fig. 2(b). For digital VSB signals, 0 and 180
are desirable local minima (the resulting output is ), whereas
90 and 270 are not desirable minima (the resulting output is

), which are surrounded by local maxima which occur at 60 ,
120 , 240 , and 300 from , as described in
Property 1. The convergence to these undesirable local minima
can be detected by monitoring the norm of DMD as described
in (10). The ratio of the two squared norms at different local
minima is given from (10) as

For 8-VSB signals, which are used in the American HDTV stan-
dard [1], . For SNR from infinity to 10 dB, the
above ratio varies approximately from 0.42 to 0.55. The squared
norm of the undesirable local minima is below 0.42
above 10 dB SNR, whereas the squared norm of desired local
minima stays near 1 and drops to approximately 0.67
at 10 dB (Fig. 3). Therefore, in most practical situations, it is

Fig. 3. Squared norm of DMD for VSB signals.

possible to distinguish the desirable from the undesirable local
minima. Once detected, an undesirable minimum can be used to
direct a reinitialization of the algorithm via a simple rotation.

IV. DMD IN THE PRESENCE OF NONIDEALITIES

A received signal suffering from ISI, or one generated from
a source with an inherent in-phase/quadrature dependence, may
violate the conditions in Assumption 2. Since the DM-derotator
can be applied after phase invariant blind equalization such as
CMA for QAM, ISI may not be a significant obstacle for QAM.
However, for VSB signals, ISI can degrade the performance of
a DM-derotator. Consequently, this section studies the effect of
ISI on the DM-derotator when applied to VSB signals. Other
simulated evidence of the behavioral features in this section ap-
pears in [4].

A. VSB Under Intersymbol Interference

In the presence of ISI, VSB signals may not satisfy all the
conditions in Assumption 2. For example, let the complex se-
quence arise from a VSB signal as in (15)

Due to the ISI channel, contains the cross terms
. The same argument used in Ap-

pendix A shows that

which does not vanish unless is even. In this situation,
the DMD cost function becomes too complicated to analyze. To
succinctly observe the change of the cost function in the pres-
ence of ISI, assume that conditions i) and ii) of Assumption 2
still hold but that the third is violated, i.e., .
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(Observe also that these assumptions also cover the case of mul-
tipath channels that have small terms and

.)
Let and denote and , respectively,

and define their ratio as

(17)

Then, the DMD cost function (7) in the presence of ISI can be
written as

(18)

where denotes a constant term. The derivative of this cost
function is given by

(19)

Recall that and are the kurtosis of and ,
respectively. As shown in Appendix A, and are given
by

where

From

and are less than 1 and decrease as the severity of
channel multipath increases. Therefore, and are larger
than the original and in the presence of an ISI channel.

Notice that the dynamic system described by (19) changes
depending on the choice of in (17), and consequently, the cost
function (18) may have a different pattern of local minima and
local maxima. All the possible stationary points of the cost func-
tion (18) can be classified based on . (Details are provided in
Appendix B.)

i) For

Local minima:

Local maxima:

ii) For

Local minima:

Local maxima:

iii) For

Local minima:

Local maxima:

The only case where the DM-derotator fails to converge to
the desired local minima is case i). The critical bound on for
this event is

which can be close to 1 as the received signals suffer from se-
vere multipath due to decreasing . For example, for 8-VSB
signals and an ISI-free channel (i.e., ), .
However, multipath interference can increase . For instance,
the three-tap channel increases to 0.8225.

The DM-derotator without norm constraint behaves in a sim-
ilar fashion, although exact bounds are more complicated. When

becomes small, the norm of the (undesirable) local minima in
case i) becomes large in order to compensate for the relatively
small power of the imaginary component. Comparing this with
the ISI-free case in Section III-B, where the norm of undesirable
local minima shrinks, it is clear that monitoring the norm of the
DM-derotator parameter is not helpful in the presence of severe
ISI when there are significant power differences between the
real and the imaginary components. However, even in the unde-
sirable case , the DM-derotator converges to a solution
exactly 90 off from the correct phase offset. Hence, modest
system “intelligence,” such as monitoring the cluster variance
of the decision device output and introducing 90 shift to the
derotator, can be readily applied to overcome the convergence
to undesirable local minima.

B. In-Phase and Quadrature Dependency

For QAM-type signals, due to the advantageous prepro-
cessing by a blind equalizer, ISI is not a hindrance, but the
source sequence may have inherent in-phase and quadrature de-
pendencies. For example, in modified QAM constellations, the
source still has identical in-phase and quadrature components
but fails to satisfy part ii) of Assumption 2. Instead

(20)

In this scenario, the DMD cost function (7) becomes

(21)

where denotes the constant term. When ,
the sign of the term in (21) changes to negative. Thus,
the local minima of the cost function is located at undesirable
values at , whereas local maxima occur at the
desirable values .

For example, the V.29 constellation [shown in Fig. 4(a) and
used in V.29 modem standard] satisfies this condition. For unit
power V.29 sources

Therefore, when using a constellation such as V.29, the value
of , which minimizes the cost of (21), is offset from the
projection onto the real axis by 45 . Hence, when applying the
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Fig. 4. DMD cost function for V29 signal. (a) V29 Constellation. (b) Cost
function.

DMD to such a constellation, this offset can be accounted for
a priori. Alternatively, it is possible to change the sign of the
stepsize in the algorithm, effectively searching for the direction
that maximizes the dispersion rather than minimizing it.

V. TRACKING ABILITY OF THE DMD

In many applications, the phase offset may drift over time due
to the frequency offset of the carrier loop. This section investi-
gates the tracking ability of the DM-derotator in the presence of
a linear-phase offset under the ideal situations and assumptions
of Section II.

Fig. 5. Tracking ability of DMD for QPSK. (a) Tracking trace of DMD
parameter. (b) lim Ef� g for various 
 and �.

Assume the phase offset is drifting linearly at a rate , i.e.,
the true phase offset at the th update is given by . Define

(22)

as the deviation of the estimated parameter of the DM-dero-
tator from the true phase offset. From the update (3) (again
without loss of generality, let )

(23)

By taking the ensemble average of the above nonlinear dynamic
system under Assumptions 1 and 2

(24)

Assume a steady state of the above system as illustrated in
Fig. 5(a) so that , and
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further assume that is small enough to validate the first-order
approximation in the expectation term in (24). Then

(25)

Using this first-order approximation gives

(26)

For example, for a unit power QPSK source ( and
), (radian), and , the steady-state

parameter error , given by the above formula,
is 0.05. This agrees well with simulation results for small
[Fig. 5(a)]. Fig. 5(b) shows the steady-state parameter errors for
various and . For and , the simulation re-
sults of the steady-state parameter error agree with the approxi-
mation values given in (26) for in the range between
and . However, for , the steady-state pa-
rameter error deviates from the approximation values for large

, which shows the limit of the validity of the “small assump-
tion” in (26).

VI. CONCLUSION

We have presented analysis of a blind adaptive phase correc-
tion algorithm based on dispersion minimization. We have de-
rived a general cost function under acceptable assumptions in
the absence of ISI and confirmed that the DM-derotator works
as expected for QAM and VSB sources. We have extended the
analysis to a number of situations of practical significance, to
the presence of ISI, to nonconventional source signals, and to
an investigation of the tracking ability of the algorithm.

APPENDIX A
STATISTICAL PROPERTIES OF DIGITAL VSB

For a digital VSB signal

where is the discrete Hilbert transform filter given by [17]

for

for
(27)

First

which establishes Assumption 2(i). The derivation has used the
i.i.d property of , and . Furthermore

Similarly, it is not difficult to check that

for , and , which satisfies Assumption 2 (ii)
and (iii).

In order to calculate the kurtosis of , first, consider a
given channel c and source . The kurtosis of is given
by

where . The derivation is as follows:

where we have used the algebraic fact that

On the other hand

Therefore

Using this formula and the fact that for the discrete Hilbert trans-
form filter, , and

which uses the summation formula [11],

we finally have
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TABLE I

APPENDIX B
CHANGE OF THE DMD COST FUNCTION FOR VSB IN THE

PRESENCE OF ISI

The derivation of the DMD cost function in the presence of
ISI yields [from (19)]

Define the following two terms which can change the dynamics
of the cost function:

Now, we tabulate the ranges of that change the signs of and
. After solving a series of quadratic equations, we summarize

in Table I, where . From the second derivative

we can observe that in case 2) for the stationary points

and therefore, are local maxima. For a 1-D
cost function, this implies that any stationary point located be-
tween two consecutive elements in must be
a local minimum. Therefore, are local minima
for case 2). For cases 1a) and 3b), the cost function behaves like
a nonuniformly distorted and has local maxima at

and local minima at . Similarly, for cases 1b)
and 3a) the cost function yields local maxima at
and local minima at .
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