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Timing Phase Offset Recovery Based
on Dispersion Minimization

Wonzoo Chung, William A. Sethares, and C. Richard Johnson, Jr., Fellow, IEEE

Abstract—This paper presents a blind timing phase offset re-
covery scheme that attempts to optimize the baud spaced equalizer
output mean square error (MSE) for a realistic equalizer length
that is usually shorter than the ideal length. Among the existing
blind timing recovery schemes, few are designed for equalizer
output MSE optimization, and none are designed for the realistic
case when the equalizer is short. The proposed algorithm (that
is based on a cost function that minimizes the dispersion of the
received signal) attempts to minimize the MSE of a one-tap
equalizer output. It also exhibits good performance for relatively
short equalizers. Conditions for the unimodality of the dispersion
minimization cost are investigated, and a geometric relationship to
the minimum MSE (MMSE) timing offset is shown qualitatively.
The detailed MSE performance of the algorithm is investigated for
the representing classes of channels by comparing existing blind
timing offset estimation schemes.

Index Terms—Adaptive blind synchronization, MMSE timing
offset, timing offset recovery.

I. INTRODUCTION

I N most digital communication systems, digital sources
are conveyed via excess bandwidth analog pulses that

are designed in satisfaction of the Nyquist Criterion [1] to
prevent aliasing for a proper sampling offset in the absence
of a multipath channel. Due to aliasing, the performance of
the receiver with a symbol-spaced equalizer is sensitive to
the sampling offset, especially in the presence of multipath
interference, where there is (in general) no sampling offset that
can perfectly eradicate aliasing. Furthermore, for the scenario
where multisensor outputs are combined in order to increase
SNR, a proper sampling offset for each sensor can contribute
to significant performance improvement [2]. In both cases,
estimation of an optimal timing offset is an important task, but
the criterion for “optimality” is not obvious when the timing
offsets must be determined at the synchronization stage. A
natural approach is to minimize the overall MSE performance
at the input to the detection device, i.e., to minimize the MSE
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at the output of the equalizer [3]. Unfortunately, direct esti-
mation of the timing offset that minimizes the overall MSE
requires knowledge of the analog channel, and the procedure
is computationally complex. Adaptive approaches based on
training sequences or decisions from detection devices can be
used in place of direct computation, but directly coupling the
updates of the timing offset and the equalizer parameters is
considered undesirable in actual implementation for a variety
of reasons [4]. Since reliable reference or decision data is often
unavailable during the acquisition phase, the estimation of
the synchronization parameters benefits from the use of blind
(nondata aided) methods. In order to avoid the sensitivity of
sampling offset in symbol spaced processing, sampling above
the Nyquist rate of the analog pulses (so-called fractionally
sampling) may also be used [5]. However, fractionally spaced
sampling and equalization is not always feasible, especially
when the additional hardware requirements cannot be met. For
example, in digital audio/video broadcasting, the signals are
often transmitted over a channel with delay spread that is too
long to be equalized with a fractionally spaced equalizer using
a restricted number of taps [6].

Therefore, a desirable timing offset estimation scheme for a
symbol spaced receiver should i) be blind, ii) not rely on the
equalizer output, and, at the same time, iii) optimize the MSE
of the equalizer output.

Among the existing schemes for timing phase offset re-
covery, the output energy maximization (OEM) method comes
closest to satisfying these three conditions. The algorithm
finds a timing offset that maximizes the sampler output energy
and consequently maximizes SNR. In [4], it was shown that
maximizing SNR is approximately equivalent to minimizing
the overall MSE of the receiver when equipped with an infinite
length equalizer. In practice, however, the equalizer length is
always constrained. When the equalizer is short, the timing
offset at that the SNR is maximized may be significantly
different from the timing offset at that the MSE is minimized.
Thus, OEM may not near optimal for a short equalizer.

This paper examines an alternative blind approach to timing
offset estimation (see also [7]) that attempts to minimize MSE
for a short equalizer, as OEM attempts to optimize MSE for a
sufficiently long equalizer. The alternative timing offset estima-
tion is designed to choose a timing offset minimizing the dis-
persion of the sampler output. Simulation results in [2] and [7]
suggest that the MSE performance of this dispersion minimiza-
tion timing offset estimation method is improved over the OEM
method for the practical case when the equalizer length is short.
This paper presents an analysis of the dispersion minimization
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timing offset as an approximation of the minimum mean square
error (MMSE) timing offset for a one-tap equalizer.

Section II defines the optimal timing offset as a timing offset
minimizing MSE of the equalizer output. An existing blind
timing algorithm (OEM-timing) that is optimized for infinite
length equalizers is compared with a training-based timing
algorithm optimized for a short length (one-tap) equalizer.
The importance of a timing offset optimized for the one-tap
equalizer is emphasized.

Section III proposes a blind adaptive approach for the timing
offset that attempts to minimize the MSE of the one-tap equal-
izer output (called DM-timing) and analyzes its cost function.
Conditions under which the timing estimation is unimodal are
derived, and a geometrical interpretation of the relation between
DM-timing and OEM-timing is presented.

Section IV investigates how well this DM-timing offset
approximates the MMSE timing offset for a one-tap equal-
izer. Due to the complexity of the closed-form analysis for
DM-timing cost function of a general channel, quantitative
analysis is performed for the representative classes of channels,
pure delays channels, clustered channels, and sparse channels.
The investigation and simulation results show that DM-timing
offset quite well approximates MMSE timing offset optimized
for the MMSE one-tap equalizer for mild multipath channel and
always performs better than OEM timing offset for the one-tap
MMSE equalizer. The final section concludes the paper.

II. LINEAR EQUALIZER OUTPUT MSE AND TIMING

This section reviews the problem of timing offset in digital
communication systems and defines the optimal timing offset
with respect to the equalizer output MSE. Consider a digital
baseband communication system in Fig. 1, where the digital
sources drawn from a finite alphabet set are converted to an
analog signal by convolving with the pulse shape function

(1)

where is referred to as the symbol period. The transmitted
signal is subject to distortion due to multipath and noise. The
multipath is characterized by a finite impulse response

(2)

where and denote the delay and the complex path gain of
the th path, respectively. The noise is modeled as a wide sense
stationary (w.s.s.) zero mean additive white Gaussian process

with variance that is uncorrelated with the signal .
At the receiver, the received signal is processed by a matched
filter with output that can be written

(3)

where the analog channel is

(4)

and where denotes the convolution operator. The matched
filter output is sampled at the symbol rate with a timing
offset .

(5)
For practical reasons, the pulse has excess bandwidth (i.e.,
the maximum frequency in is larger than ). However,

is designed under the Nyquist criterion [1] so that the
sampled signal does not have aliasing for the perfect timing
offset in the absence of a multipath channel.

To examine the effect of the timing offset on the sampled
signal in the presence of a multipath channel, assume that the re-
ceived filter is matched to the pulse shape and
that the pulse shape is symmetric (for ex-
ample, a square root raised cosine filter [1]). Then, the sampled
noise component , which is denoted by

, becomes a white zero mean Gaussian process with vari-
ance independent of from the property of the symmetric
Nyquist filter and the whiteness of . On the other
hand, the signal component is dependent on the timing offset.
By defining the sampled channel with respect to the sampling
offset as a vector , i.e.,

(6)

the sampled output can be written in the discrete time domain as

(7)

In the absence of multipath, is given by

(8)

and thus, the correct timing offset perfectly restores the
digital data . In the presence of multipath, cannot be
reduced to a single nonzero tap in general. Furthermore, the
aliasing due to excess bandwidth of can deepen the spec-
tral null of the sampled channel , depending on the timing
offset , and can effect the MSE performance of the equalizer
[8]. Thus, in the presence of multipath, it is desirable to deter-
mine jointly the timing offset and the equalizer.

Consider an MMSE equalizer for a given channel with
respect to a given timing . The optimal timing offset is
to minimize the MSE of the equalizer output in the
presence of a multipath channel, i.e.,

(9)

where the delay applied to the source (or training) sequence
is called the system delay. This definition of timing offset
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Fig. 1. Digital communication systems model.

optimality can be extended to the problem of combined mul-
tiantenna inputs. In this form, determining the optimal timing
offset can be viewed as a nonlinear quadratic optimization
problem over the channel vectors under a constraint imposed
by the parameter . This problem is difficult because a direct up-
date for the timing offset based on feedback from the equalizer
output is undesirable not only from an implementation point of
view [4] but also due to the latency caused by the convergence
of the equalizer. Furthermore, a closed-form estimation of
the optimal timing offset is infeasible due to the extremely
complicated nonlinear relation between the parameter and
the resulting sampled channel .

However, relatively simple solutions exist for the extreme
cases of equalizer length; for a one-tap equalizer, ,
and for an infinite length equalizer, . For the MMSE
equalizer of length , , the MMSE with respect to the
system delay and timing is given by

MMSE (10)

MMSE (11)

where is the noise-to-signal ratio defined by

(12)

A detailed derivation of (10) and (11) can be found in [9].
Now, consider the timing offset for a one-tap linear

equalizer. Since the delay term appears only in in
MMSE , the attainable minimum MMSE with
respect to the is given by MMSE , and
hence, the optimal timing offset that minimizes the MMSE for
the one-tap equalizer is given by

(13)

where denotes the norm.
The MMSE-timing function (13) provides a geometrical in-

terpretation of the timing offset optimization for a one-tap equal-
izer. Consider normalized ,

(14)

lies on an -dimensional sphere as varies from 1/2
to 1/2, and is chosen so that (13) is as large as possible,
which occurs when is maximized. Thus, the effect of

using the optimal timing offset for a one parameter equalizer
can be seen directly by looking at the taps of . Intersymbol
interference (ISI) is minimized by maximizing the magnitude of
the tap corresponding to the system delay and, at the same time,
suppressing all others.

On the other hand, for the timing offset optimized for infinite
length equalizers, in [4], the following approximation of (11) is
proposed:

MMSE (15)

In this case, minimizing MMSE is equivalent to maximizing
the channel power and, consequently, improving the
signal (including ISI components) to noise ratio, since an in-
finite length equalizer can perfectly restore signals from ISI.

Apparently, increasing total signal power does not necessarily
improve the equalizer output MSE, especially when the multi-
path is severe and the equalizer is not long enough to mitigate
the multipath. The following example confirms that applying the
timing offset optimized for an infinite length equalizer to a finite
equalizer (15) performs worse than the timing offset optimized
for the one-tap equalizer (13).

Example 1: Consider a multipath channel

(16)

using a raised-cosine pulse-shaping filter with a roll-off factor
under SNR dB. Numerical calculation shows that

the optimal timing offsets for , and the optimal
timing offset for , are given by

(17)

For these two timing offsets, Fig. 2 plots the MSE of a) MMSE
linear of equalizers of all lengths from 1 to 25 and b) the MMSE
decision feedback equalizer (DFE) with feedback filter of fixed
length 12 and feedforward equalizers with all lengths from 1
to 25. The optimal timing offset for each finite equalizer length
has been calculated numerically, and its MMSE equalizer MSE
is depicted as a dotted line. In all cases, when the timing is op-
timized for a one-tap equalizer, the performance is better than
when it is optimized for an infinite-length equalizer.

This example does not represent a peculiar case. In fact, one
can confirm this trend for a set of randomly generated chan-
nels, as reported in [10]. The next section presents an adaptive
scheme approximating the timing offset for the one-tap equal-
izer without help of known training sequence.

III. TIMING OFFSET BASED ON DISPERSION MINIMIZATION

A. DM-Timing Offsets

Instead of directly minimizing the MSE, which requires
training signal or analog channel estimation, [7] has proposed
minimizing the mean dispersion of the sampler output signal,
i.e.,

(18)
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Fig. 2. MMSE equalizer output MSE and Timing offset. (a) Linear equalizer. (b) DFE with feed back filter length 12.

where is a constant corresponding to the source statistics. (
; for details, see [11].) The cost function is known

as the constant modulus (CM) cost and is widely used for blind
equalization [11]. In order to approximate MMSE
with respect to a one-tap equalizer , we proposed to rewrite the
cost function (18) as

(19)

as illustrated in Fig. 3. Using a stochastic gradient algorithm
[12] to minimize (19) by recursive selection of and gives
the dispersion minimization (DM) timing algorithm

(20)

(21)

where can be obtained numerically when a closed
form is unavailable.

Expansion of the DM-cost function (19) provides detailed in-
formation on the DM timing offsets. Setting and
assuming , the DM cost function (18) is given by the
following (for the derivations, see Appendix A):

(22)

where and are called kurtosis of the source and the noise
, respectively, and are defined by

(23)

(24)

where denotes the norm. Note that for a real
Gaussian and for a complex Gaussian . Since

Fig. 3. Dispersion minimization timing offset.

the cost function (22) is a quadratic function of , there exists
a unique optimum for each . Using this fact, (22) can be
written as a function of only , which leads to the following
result.

Theorem 1 (DM-Minima): The DM-timing offset for a single
sensor is given by

(25)

Proof: See Appendix B.
There is a similarity between MMSE-timing and DM-timing.

Recall the notation . In the absence of noise,
the optimal MMSE timing offset for a one-tap equalizer is given
by , whereas the optimal DM-timing offset
is . The only difference between these two
timing offsets is the norm used ( or ). In both cases, with

constrained to , the optimal lies on the
unit ( or ) sphere.

B. Unimodality Condition of DM-Timing

This section establishes a concrete set of conditions under that
the DM cost function bears a unique maximum, which seems to
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TABLE I
DM-TIMING FUNCTION COEFFICIENTS VERSUS ROLL-OFF FACTOR OF RAISED COSINE

be satisfied in most practical situations. The immediate impli-
cation of this result is that the algorithm’s asymptotic behavior
is insensitive to the initial conditions. Call

(26)

the DM-timing cost. The following analysis focuses on the uni-
modality of . Let denote the Fourier transform of ,
which is the analog channel, and denote

(27)

where indicates convolution operator. From the Fourier series
expansion of and

(28)

(29)

Assuming , since is bandlimited, we have

for for (30)

From (28) and (29)

(31)

(32)

The values of are determined by the multipath
channel and the pulse-shaping filter . In practice, a
commonly used pulse-shaping filter is a raised cosine function
with spectrum

(33)
where is the roll-off factor determining the excess bandwidth.
A roll-off factor from 0.1 to 0.3 is commonly used in practice
(for example, [13] and [14]).

For a multipath , is given
by

(34)

Since for given complex func-
tions and , we have

(35)

(For the detailed derivation, see Appendix E.) For a roll-off
factor from 0.1 to 0.3, the tails of are quite small, and con-
sequently, the values , , and are vanish-
ingly small in comparison with other values such as and

(see Table I). Thus, a good approximation of is

(36)

which simplifies the DM-timing function to

(37)

For the rest of this paper, we use the approximation (36) for
further investigation in order to avoid extremely difficult com-
putational complexity due to the high-frequency term in (32).

Theorem 2 (Unimodality): Denote

(38)

Then

(39)

is unimodal, i.e. has a unique maximum, when the following
condition holds:

(40)

Proof: See Appendix C.
Notice that the condition (40) in Theorem 2 is satisfied when

the tails and decrease rapidly. Table I shows that
for small roll-off factors , (40) is satisfied, which implies
that the DM-algorithm has only one minimum. This holds for
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any multipath channel. In fact, (40), which is given in Theorem
2, is a loose bound. A tighter bound can be found under slightly
more complicated conditions, as shown in [10].

IV. PERFORMANCE OF DM-TIMING

The MSE performance of the dispersion minimization ap-
proach has been intensively studied for the equalization appli-
cations under the assumption that perfect equalization is pos-
sible [15], [16]. It has been shown that the dispersion minimiza-
tion approach can achieve near-MMSE performance. However,
this result cannot be applied to the timing offset problem here,
since the channel vectors parameterized by timing offsets are
constrained. In fact, the geometrical arguments used to show
the near-optimal MSE performance of dispersion minimization
[17], [18] fail for the constrained cases [10]. On the other hand,
due to the nonlinearity of the cost functions for DM-timing
and MMSE-timing, it is a virtually impossible task to estab-
lish a rigorous MSE bound for a general channel. Therefore, the
MSE performance of DM-timing is investigated by comparing
the location of the three different timing offsets, DM-timing,
MMSE-timing for a one-tap equalizer, and MMSE-timing offset
for an infinite length equalizer (the existing blind timing offset
method). This comparison demonstrates the relative MSE per-
formance of the three timing methods when used with short
equalizers and provides intuition about the different approaches.

Consider a multipath channel of rays with a raised-
cosine pulse shape and its Fourier transformation, as given in
(33) and (34)

Recall that and that ,
, , and . Let

(41)

The MMSE timing offset for infinite length MMSE equalizer,
which is denoted by , is given from (15)

(42)

On the other hand, the MMSE timing offset for the one-tap
MMSE equalizer, which is denoted by , is given by

(43)

(44)

These formulas imply that is shifted from
toward , and is shifted from to-
ward . For example, satisfies (45), shown at
the bottom of the page. Notice that when ,

, and consequently, . Depending on the
channel, , , and agree or disagree each other. In
general, for mild multipath channels, is a reasonable
approximation of , and thus, is close to ,
whereas usually deviates from . As the severity of the
channel increases, tends to locate away from and close
to , and consequently, its MSE performance is degraded.
In the next subsections, we will further investigate these MSE
properties of DM-timing for the cases where can be
approximated by a manageable function. To proceed further, we
need the following Lemma.

Lemma 1: Let and denote delays in the time domain.
Then, we have

(46)

(47)

(48)

Proof: See Appendix D.

A. Case 1: Pure Delay

First, as a simple example, consider a pure delay channel, i.e.,
. Since is a raised cosine delayed by

and sampled at , the one-tap MMSE equalizer as well as the
infinite length equalizer has the minimum MSE. On the other
hand

(49)

Since is real valued, . Thus, from (45),
we have . In this pure delay case, , ,
and agree with each other.

B. Case 2: Clustered Channels

Assume that the multipath channel given by

(50)

is clustered in the sense that .
Since the delays are clustered, the peaks for each delay merge

(45)
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Fig. 4. DM-timing and MSE-timing for two-tap channels. (a) Timing offset locations. (b) MSE performance of timing offsets.

Fig. 5. DM-timing and MSE-timing for clustered channels. a) MSE deviation mean; b) MSE deviation variance.

into a single peak. This can be shown by the following approx-
imation in the region :

sinc sinc (51)

where we have used

sinc

(52)

Therefore

for

(53)

for a magnitude and phase . From
, and are given by

(54)

Thus, we have

(55)

for all .
On the other hand

(56)
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Fig. 6. DM-timing and MSE-timing for mild multipath channels. (a) MSE deviation mean. (b) MSE deviation variance.

(57)

(58)

where, in (57), we have used property ii) of Lemma 1, and the
assumption that the multipath channel is clustered. Similarly,
since is again real and symmetric, Lemma 1 shows that

(59)

and consequently

(60)

(61)

Therefore, we have

(62)

This implies that and are shifted from the same lo-
cation toward , and thus, they are located close each
other (close MSE performance), whereas may not be lo-
cated close to (different MSE performance), as the simula-
tion results in Section IV-D confirms.

C. Case 3: Sparse Channels

Now assume that the multipath channel
is sparse in the sense that

for all (63)

Without loss of generality, is assumed to be the maximum
multipath magnitude, and . Since the multipath is sparse,
near the highest peak , the contribution from the tails of
other peaks can be ignored, i.e., locally at

(64)

Thus

(65)

On the other hand

(66)

(67)

where we have used property iii) of Lemma 1 and the assump-
tion of channel sparsity. Similarly

(68)
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Fig. 7. DM-timing and MSE-timing for severe multipath channels. (a) MSE deviation mean. (b) MSE deviation variance.

and consequently

(69)

(70)

Notice that and are the nonlinear average of ’s weighted
by the power of the magnitude of multipath. when

for (pure delay) and for all (the worst
multipath). For the other cases, is closer to than
since is smaller than . For example, in a two-tap channel
case, assuming , and are given by

(71)

and for mod , this is simply
( , 4). Fig. 4(a) plots three different timing offset for

as increases 0 to 1. follows the trajectory of
from 0 to 1/8 , and is

shifted toward (or, equivalently, ) from
. is located close to until and rapidly

approaches as the multipath becomes more severe. The
corresponding MSE performance is shown in Fig. 4(b). Notice
that the MSE exhibits the same pattern for timing offset loca-
tions in Fig. 4(a).

This two-tap example suggests that under mild channels
the DM-timing offset yields near MMSE performance for the
one-tap MMSE equalizer, and under severe multipath distor-
tion, the DM-timing offset achieves better MSE performance
than the conventional OEM algorithm. The simulation results
in the following subsection experimentally confirms this MSE
performance of DM-timing for general channels.

D. DM-Timing Offset MSE Performance Simulation

This subsection presents simulation results comparing MSE
performance of different timing offset , , and

for a one-tap equalizer under 30-dB noise. For the number
of multipath rays from 2 to 10, 10 000 different randomly
generated multipath channels are used to compute mean and
variance of MSE difference, i.e., MSE MSE ,

MSE MSE , Var MSE MSE ,
and Var MSE MSE . For the clustered scenario,
the delays are confined to . For the mild channel
scenario, the magnitude of the cursor tap is set to 1, and the rest
are confined to below 0.5 (less than 3 dB multipath), and for
severe multipath, the rest are set to above 0.5. The simulation
results shows the MSE performance of the DM-timing offset
predicted in the previous subsections.

For clustered channels, mean and variance of the MSE differ-
ence between and are significantly lower than that be-
tween and . This indicates that is a good approx-
imation for , whereas may not be for certain channels.

For the nonclustered channels, outperforms . For
mild channels, the mean and variance are small, which indicates
that is still a good approximation for . Since the mag-
nitude of the multipath echos rarely exceeds 3 dB in terrestrial
digital broadcasting, can be used as a reliable blind replace-
ment for .

V. CONCLUSION

The timing phase-offset recovery problem has been stated
as a constrained channel optimization for a finite-length
symbol-spaced equalizer with respect to the MSE of the equal-
izer output. A blind adaptive approach based on dispersion
minimization can be used to achieve this optimality for a short
equalizer. A geometrical argument is presented that allows
comparison with the MMSE approach and issues of uni-
modality of the DM-solution have been addressed. The MSE
performance of DM-timing has been investigated by comparing
dispersion minimization timing offset with standard timing
offsets. DM-timing offset achieves close MMSE performance
for clustered multipath channels, regardless of the severity of
the multipath. For sparse channels, the MSE performance of
DM-timing degrades as the severity of the multipath increases
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but still achieves better performance than the conventional
output energy maximization timing offset (see Figs. 5–7).

APPENDIX

A. Proof of (22): Expansion of DM-Cost Function

For a given parameter set , denote . Then, the
cost function (22) is written as

(72)

First, from the fact is i.i.d.

(73)

where is the second moment, and is the fourth moment.
Since we assume is circular when it is complex

complex case
real case

(74)
Therefore

(75)

(76)

(77)

On the other hand

(78)

(79)

Similarly

complex case
real case.

(80)

Now, the cost function can be written as

Since , and , and . Furthermore,
from the definition of kurtosis

(81)

Thus

(82)

(83)

B. Proof of Theorem 1

From (83) in Appendix A, the DM-cost function jointly with
a scalar equalizer can be written as

(84)

Since the cost function is a quadratic of

(85)

Now, can be written with respect to

(86)

(87)

Since is negative, we have

(88)

C. Proof of Theorem 2

We use the following substitution:

(89)

so that we have

(90)

where . Furthermore, we denote

(91)

(92)

Since , the unimodality of is equivalent to that of
. Notice that is bounded and periodic, and

. Therefore, it is sufficient to show that the derivative of
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has only two roots for : One of those is
the maximum, and the other one is the minimum. Consider the
derivative

(93)

Because , it is enough to show that the numerator in
(93) has only two roots.

(94)

We want to apply the following trigonometry identity to the
above equation:

(95)

In order to do that, we need to check that the coefficient terms
of and in (94) are nonzero for some .

First, observe that

(96)

where, in the last step, we have used (40).
Second, when , then (94) collapses into the fol-

lowing sinusoid:

(97)

and has only two roots, since the coefficient is nonzero from
(96). Therefore, we can assume , which guarantees
that for all , either

or (98)

Now, we have (99), shown at the bottom of the page, where

(100)

Since the coefficient of the term in (99) is nonzero, it is
sufficient to show that the term

(101)

has only two roots for in order to prove the theorem.
Notice that is a continuous function of and

; thus

(102)

When increases strictly monotonically for
, i.e.,

(103)

then

(104)

and has only two roots since

(105)
Therefore, we need to show that

or (106)

We will show that . Using the fact

(107)

we have (108)–(112), shown at the bottom of the next page.
From (111) to (112), we used the following inequality from (40):

(113)

(114)

From (108) to (109), we utilized the following inequality:

(115)

(99)
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D. Proof of Lemma 1

Consider

(116)

(117)

From (116) and (117), we have used the change of variable
and exploited the fact that

is an anti-symmetric function since
is symmetric. Property i) follows from the fact that the

integration portion in (117) is real valued. Again, from (117),
we have

(118)

(119)

which proves ii). On the other hand, we have

(120)

(121)

(122)

sinc (123)

(124)

where in (122), we used the fact that is non-negative. This
proves iii).

E. Proof of Inequality (35)

Since can be written as a sum of -convolutions drawn
from combinations of

(125)

we have

(126)

In order to show that

(127)

consider a two-term-convolution case first:

(128)

(108)

(109)

(110)

(111)

(112)
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(129)

(130)

In (128), we used the Schwartz Inequality, and in (129), we used
the fact that and , are non-negative real.

Applying this inequality inductively for each -convolution
term, inequality (35) can be obtained.
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