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The Covering Problem and
p-Dependent Adaptive Algorithms

James A. Bucklew, Member, IEEE, and William A. Sethares, Member, IEEE

Abstract— This paper presents a family of techniques, called
Adaptive Covering Algorithms, which solve a particular covering
problem—how to best cover a target shape using a set of simply
parameterized elements. The algorithms, inspired by adaptive fil-
tering techniques, provide a computationally simple, robust, and
efficient alternative to more traditional methods such as Bayesian
approaches, convex hulls, and multi-layer perceptrons. The paper
develops a theoretical understanding of the adaptive covering
algorithms by relating their behavior via weak convergence
techniques to the evolution of a deterministic ordinary differential
equation (ODE). In the process, we give new convergence results
for a class of step size-dependent recursive algorithms. Stability
and instability of the ODE can be interpreted in terms of local
stability/instability of the algorithm. In terms of the covering
problem, candidate coverings tend to improve as more data is
gathered whenever the ODE is stable. Several examples are given
which demonstrate the ideas and which verify that the analysis
accurately predicts the true behavior of the algorithms.

I. INTRODUCTION

ANY problems in image analysis, data compression,
automatic classification, and pattern recognition can be
stated succinctly in terms of the covering problem:

Given a set of parameterized shapes (such as rectangles,
ellipses, polygons, half planes), how can a target region (or
family of target regions) be best covered by these shapes?

Of primary interest are algorithms which automatically learn
the target region. Algorithms which are easily implemented,
computationally efficient, and robust to noise and misclassifi-
cation errors are preferred. This paper presents a family of such
algorithms whose first members were introduced in [16], and
which are variants of known adaptive filtering methods [15].
We call this family of techniques adaptive covering algorithms
(ACAs).

A parameter (or weight) vector Wi € R™ is used to
concisely describe the best current guess at time k of the target
region. An iterative method of the form

Wit1 = Wi + p {correction term} 1)

is employed to improve this guess, where the correction term
is some simple function of the data available at time k, and
p is a stepsize that determines the impact of the new data
on the current estimate. A good choice of the correction term
will cause the parameter vector sequence {Wj} to improve
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with time on average. In certain cases, an analytical technique
in the spirit of [2], [3], [8], and [ 9] can be used to provide
concrete information about the behavior of the algorithm. This
technique relates the stochastic behavior of the algorithm to
the behavior of a deterministic ordinary differential equation
(ODE). When the ODE is stable, the algorithm will tend to
converge to a region about its minimum, and this convergence
can be characterized in terms of a steady state error distribu-
tion. When the ODE is unstable, the algorithm is unstable.

In terms of the covering problem, these analyses demon-
strate that when the ODE is stable, the covering of the target
area will improve, on average, over the course of time. More-
over, if the covering is initialized “near” the optimal covering,
then the algorithm is guaranteed to converge (distributionally)
to a small ball about that optimal covering. When the ODE is
unstable, the covering is unlikely to be useful. Many nonlinear
algorithms are susceptible to local minimum problems. We
have found, however, that the best of the ACA’s tend to behave
rather well in the sense that they converge to a good covering,
in reasonable time, even if it is not optimal.

Much of the robustness of the ACA approach arises because
the adaptation of the parameterized shapes is smoothed by
a user-chosen stepsize. Larger stepsizes cause the algorithm
to converge faster, but result in more jitter in the event of
significant noise (such as errors in the sample points or in
the indicators). Small stepsizes imply slower convergence, but
noises are more effectively smoothed. This sort of behavior is
generic in the study of adaptive algorithms.

There are, of course, many ways of attacking this problem.
Algorithms which address the problem of learning decision
regions typically fall into two categories, “convex hull” (and
other clustering) approaches, and Bayesian (or other statistical)
methods. The convex hull approaches are computationally
expensive and are sensitive to noise or errors in the training set,
while the Bayesian methods are sensitive to deviations from
the assumptions, which typically require detailed knowledge
of the statistical properties of the relevant data. We will not
detail either of these methods.

The present approach is closest to [6] (which is also
an outgrowth of [16]), where a class of online learning
algorithms are analyzed deterministically via Lyapunov and
averaging methods. These algorithms incorporate sigmoidal
functions in their updates, making their implementation similar
to the neural networks of [1], which solved for a class of
nonlinearly parameterized regions using examples and queries.
The learning algorithm of [6] and the adaptive covering
approach can both solve such problems using examples only.
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Another related method is that of [13], where a standard
perceptron is used with an augmented input vector to identify
regions of various shapes. The advantage of our explicit
parameterization is that it allows one to easily incorporate
prior information about target shape or shapes directly into
the algorithm structure. This serves the purpose of reducing the
dimensionality of the parameter space that must be searched
in order to find a good estimate, and finesses a difficulty
encountered in perceptron-type algorithms of requiring (for
solvability) a large augmented input vector [11].

ACA’s are only superficially related to the template match-
ing morphological approach of [14] in which fixed structuring
elements (or templates) are moved in a predetermined way
across an image. ACA’s, in contrast, use parameterized regions
that change size, multiple templates operate simultaneously,
and their motion across the image is determined by the image
itself.

Section II presents and motivates some candidate covering
algorithms. Section III presents some new theoretical results
using weak convergence techniques developed for the study
of adaptive algorithms. Section IV applies the theory to
several specific examples, which allows us to draw conclusions
regarding the suitability of certain of the algorithmic variants.
Section V presents simulations which graphically illustrate the
behavior of the algorithms as the primitive shapes migrate to
cover the target areas. Section VI is devoted to conclusions
and possible future work.

II. CANDIDATE ALGORITHM GENERATION

The first method employed to generate algorithms was
to modify some well known adaptive filtering algorithms to
work on the covering problem. The most famous of all such
algorithms is the least mean square (LMS) algorithm. For
example, let W; be a set of weights in a linear filter and
denote the output as

Y = Wi Xy (2)

where X} is an input vector and * denotes transpose. The
goal is to adjust the parameters W), so that the output of the
linear filter (2) matches dj, as closely as possible. The LMS
algorithm [15] is

Wis1 = Wi + pXe(dr — y&)- 3

Numerous variants are possible. For instance, the “signed
error” algorithm [5]

Wiy1 = Wy + pXisgn(di — y) “)
and the “sign-sign” LMS algorithm [10]
Wiy1 = Wi + psgn(Xi)sgn(di — yk) 5

are popular choices, where sgn of a vector is taken to be an
element-by-element operation. Two of the algorithms studied
in Section IV are close analogs of (4) and (5).

LMS and its variants are frequently interpreted as being
modified gradient descent algorithms. Given an estimated set
of parameters Wy, at time k, a “cost” is defined via the function
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J(Wy,). The key idea of this technique is to make improved
estimates via the iteration

Wit = Wi —uVJ 6)

where the gradient VJ is taken with respect to Wy. If the cost
function is (locally) convex, and the stepsize is small, then
the cost J(Wy) is a nonincreasing function of time, that is,
the parameter estimate Wy 1 is never worse than the estimate
W;. The particular form of the update term depends heavily
on the function J and its dependency on W. Gradient descent
strategies can be exploited in the covering problem in a fairly
straightforward fashion.

The stochastic approximations approach is similar, except
that the stepsize p is replaced by a time varying stepsize that
gradually converges to zero; px = 1/k is a common choice.
The decreasing p, is attractive because one can often guaran-
tee that the algorithm converges. With fixed p algorithms, this
rarely occurs. Once the algorithm has “converged” it tends
to jitter around some averaged equilibrium. It has been our
experience that the fixed 4 case (for small 1) tends to be more
useful because it does not “shut off” for large k. The fixed
p algorithms tend to zoom into an equilibrium and wiggle
about near it. The decreasing pj algorithms tend to take orders
of magnitude longer to get within range of the equilibrium.
Hence we have concentrated most of our attention on fixed
W structures.

We now apply these gradient descent notions to the covering
problem. For any set A € R", let I4(-):R" — {0,1} denote
the indicator function of the set A. Suppose there are n
parameterized “shape” or kemel functions Kyi(): R" —
R i =1,...,n where a' € R™ is the i*! parameter vector
al = (ai,db,...,al,). A typical example (for r = 2) is
Ka(-) = Ig(s,a)(-) where R(s,d) is the interior of a rectangle
with center s = (s1,2) and sidelengths d = (d1,dz). Let
X denote an r-dimensional random variable distributed over
a region that includes the target arca. Usually X is taken to
be uniform. This random variable may be thought of as the
“sampling” random variable. Consider an Ly or mean squared
error objective function:

J(al,a?,...,a") = E{|Ir(X) - i Ki(X) O

For example, if Ka(-) = Ips,a)(-), the argument of the
expectation is 0 at a point z € T exactly when a single
box covers that point. In general, the argument is (k — 1)2
if k boxes are covering. Thus there is an impetus to cover,
but also a counterbalancing tendency to “spread out” over the
target area. Similar arguments usually hold for other choices
of kernel function.

Using the cost function (7) and the gradient strategy (6)
leads to the algorithm

(Bf 11,8811 k1) = (3K, 2k, ag) —uV(X) ®)
where V(z) = V|Ir(z) — Y1, Kai(2)|?* and the gradient is
taken with respect to the parameters (al,a?,...,a").

In some cases, as when K, (-) = Igp(s,4)(+), the differentia-
tion operation needed in the definition of V(-) is impossible.
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Even though V' (-) does not exist in functional form, J(-) might
still be differentiable. In this case, one possible approach is to
numerically differentiate J(-), and use the resulting calculation
in (8). This is reminiscent of the Kieffer—-Wolfowitz algorithm
[7] of stochastic approximations. The numerical differentiation
sometimes causes problems of its own, usually pertaining to
poor noise immunity and resulting slow convergence rates. We
investigate an algorithm that incorporates numerical differen-
tiation in Section IV.

Another alternative is to make sure that the kernel functions
are differentiable. One possibility is to choose a kernel function
K, with “smooth” edges. For example, we might choose
a = (s,d) and

Ka(z) = exp(~[z — s]* D]z — s]) ©)

where D is the diagonal matrix whose nonzero entries are the
d vector. V(-) is differentiable and (8) can be implemented
directly. We investigate this algorithm in Section IV.

The Gaussian kernel of (9) is, of course, only one of many
sensible choices. Butterworth approximations to boxes, and
other kernels from filtering theory, quickly come to mind.
We find that the convergence properties of the algorithms are
heavily dependent upon the nature of the kernel functions (as
well as target shape). The design of a good algorithm for
a particular application must take into account all of these
factors.

Another way to create more candidate algorithms is to
change the functional form of J(-). Instead of the L? error,
E{|I7(X) = 3, Kai(X)|?}, one might use the L! error,
E{|Ir(X) =", K.(X)|}. The former leads to algorithms
which might be thought of as analogs of LMS, while the latter
leads to “signed” style updates.

Given this large body of potential algorithms, how can
an intelligent choice be made? The next section presents
a methodology that has been successful in analyzing and
comparing various adaptive filtering algorithms. We then give
examples of this methodology applied to the specifics of the
covering problem.

III. LOCAL STABILITY AND WEAK CONVERGENCE ANALYSIS

The basis of the analytical approach is to find an ordinary
differential equation (ODE) that accurately mimics the be-
havior of the algorithm for small values of y. Studying the
ODE then gives valuable information regarding the behavior
of the algorithm. For example, if the ODE is stable, then the
algorithm is convergent (at least in distribution). If the ODE is
unstable, then the algorithm is divergent. In addition, looking
at the eigenvalues of the linearized portion of the algorithm
(which can be accomplished even for highly nonlinear algo-
rithms if there is sufficient smoothing imparted by the input
and noise processes) gives a local rate of convergence for the
algorithm. To be more specific, consider an ACA as a discrete

time iteration process
Wit1 = Wi + pG(Wi, Y, U 41, 1) 10

where W, is the parameter vector of weights that define the
primitive shapes, y is the stepsize, Uy, is an input vector that
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usually consists of the new sample point x, and Y}, represents
errors in the samples zi, in the evaluation of Ir(zx), com-
putation errors, or other disturbances. The function G(-,-,-,-)
represents the update term of the algorithm, and is in general
discontinuous for ACA’s. In implementation, one typically
considers both the sample point z; and its indicator Ir(xy)
to be inputs. It is more convenient analytically to suppose
that only zj is input, and that G then calculates Ip(zx). A
related, but somewhat simpler model than (10) (without the
dependence of GG on p) is considered extensively in [3] and in
the book by Beneveniste, et al. [2]. The model

Wis1 = Wi + uG(Wi, Yi, Uk s1) + > H(Wy, Ye, U 41)

studied in [2] may be viewed as a special case of the u-
dependent algorithm. This form can be generalized to (10)
when G(.,-,-,-) is differentiable with respect to p. The u-
dependent algorithms considered in this paper are usually not
differentiable. Kushner [8] studies the general p-dependent
case but uses different methods and technical conditions from
ours. Our theorems are different from theirs, following the
techniques and methods of [3].

What is the nature of the random process {W;}? When is
this process stable? How can its convergence to equilibria be
characterized? These questions can be addressed by relating
the behavior of the algorithm (10) for small . to the behavior
of the associated deterministic ordinary differential equation
(ODE)

t
W(t) = Wo + / T(W (s))ds (1
0
where G(-) is a version of G(-,-,-,-) that is smoothed, or
averaged, over the inputs and the disturbances. Speaking
loosely, the ODE W (¢) in (11) represents the “averaged”
behavior of the parameters Wy in (10).

Suppose that (W, Y, Uy ) is adapted to the filtration {F}.
Assume also that Uy, given (Wg, Y}) is independent of Uy.
(See assumption A4 and remark 3 below for discussion of this
assumption.) Define

G(Wk» Yk, H) = E[G(Wk~ ka Uk+la M)|fk]

to be a version of G that is smoothed by the distribution of
the inputs Uy 1. This smoothed version is often differentiable
even if G itself is discontinuous. In the following, several
versions of the update term will be defined. G is the update
term in the algorithm (10) and Gisa versiqn of GG that is
smoothed over the distribution of the inputs. G is the limit of
the G’s with respect to », while G of (11) is a version of G
smoothed further over the distribution of the disturbances. A
time scaled version of {Wy} is defined as

Wu(t) = W[t/u}, te [0,00)

where [z] means the integer part of z. Note that W (with
the Roman subscript) represents the discrete iteration process,
while W, (t) (with the Greek subscript) represents a continu-
ous time version. W (¢) (with no subscript) is the ODE (11)
to which the others converge.
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Let (E, ) denote a metric space with associated Borel field
B(E) and let Dg[0,00) be the space of right continuous
functions with left limits mapping from the interval [0, o) into
E. Let Cg[0, oo) denote the subspace of continuous functions.
We assume that Dg[0,00) is endowed with the Skorohod
topology (see Appendix for definition).

Let {X,} (where a ranges over some index set) be a
family of stochastic processes with sample paths in Dg[0, 00)
and let {Py} C P(Dg[0,00)) be the family of associated
probability distributions (i.e., Po(B) = P{X, € B} for
all B € B(E)). We say that {X,} is relatively compact
if {P,} is relatively compact in the space of probability
measures P(Dg[0,00)) endowed with the topology of weak
convergence (see Appendix for definition). (A set is said to be
relatively compact if every sequence contained in the set has
a convergent subsequence.) The symbol = will denote weak
convergence, while the arrow — will denote convergence
under the appropriate metric. An excellent reference for all
the mathematical terms and probabilistic constructs used in
this section and in the Appendix is [4].

Consider the following technical assumptions:

Al {G(Wi,Ye,n) : k € Z%,u > 0} is uniformly

integrable.

A2)

{t/n]
12 Y E[(G(Wk, Ye, Ursa, 1) — G(Wi, Ye, 1))?] — 0.
k=1

A3) Wy = W,(0) — wo € R" in probability.

A4) {Yi} is a stationary ergodic sequence of E valued
random variables. Furthermore, there exists a measur-
able function q(-, -, -) such that Ux1 = ¢(Wk, Yk, ¥&)
where the {4} are i.i.d. F,-valued random variables.

AS) G’(w,y, u) converges uniformly on R" x E to a
bounded continuous function G(w,y).

Theorem 1: Under A1-A5, {W,} is relatively compact and
every possible limit point is a random process taking values in
C[0, 00). Furthermore, every limit point of {W,} satisfies (11).

All proofs are relegated to the Appendix, since they are
technically involved.

The theorem asserts that the ACA’s (10) will behave like
the ODE (11) for small enough p. If the solution to the
ODE is unique, then the sequence actually converges in
probability (not just has a weakly convergent subsequence).
The solution of the ODE is, of course, continuous. The
Skorohod topology for continuous functions corresponds ex-
actly to uniform convergence on bounded time intervals.
Hence, convergence in probability means that for every T' >
0,¢ > 0, limy, o P(supoc,<r |Wu(t) — W(t)| > €) = 0.
This is useful because the ODE can often be analyzed in
a straightforward manner, otherwise it can be numerically
integrated. The advantage of calculating the ODE over directly
simulating the algorithm is that the behavior of the algorithm
can vary widely in the short term, depending on the vagaries
of the disturbances, the sampling methods used, the input, the
target area, etc., while the ODE is fully deterministic.
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Remarks

1) If desired, W,(t) can be “stopped” (and held constant)
if it wanders outside of some predetermined set A
(usually chosen to be compact). A similar theorem for
the sequence of stopped processes can then be shown. If
A is compact, then the assumption of boundedness in A5
can be removed (since the stopped process will always
be bounded anyway). If the limiting ODE has a unique
solution which does not blow up in finite time, we can
then let the compact set A enlarge to the whole space
and have a limit theorem for the “unstopped” process.
See [3] for details. Working with stopped processes, Al
can be replaced by '
AY') {sup,c4 G(w,Ye,u):k € Z*,u > 0} is uni-
formly integrable.

2) The first part of assumption A4 can be changed to
A4y {Y;} is asymptotically ergodic. Furthermore,
there exists a measurable function ¢(:,,-) such that
Uk+1 = q(Wk,Yk,’l/)k) where the {1/)1;} are i.id.
E,-valued random variables.

When A4’ holds, we must redefine G(w) =
limp oo 2 Y5y G(w, V).

3) The assumed i.i.d. nature of the underlying noise process
{4} in the second part of A4 may at first glance
seem stringent. It is really more of a convenience
to simplify notation than any fundamental limitation.
We could instead assume that Ux+1 = ¢(Wi, Yi, ¥k)
and {(Yi,¥x)} is a jointly ergodic sequence of E x
E, valued random variables. In that case, then G =
G’(Wk,Yk,wk,u), i.e., we have a 1), dependence now
in the ¢ function. This causes no difficulties and the
proofs and theorems proceed identically.

Al-A2 are sometimes onerous conditions to check. They
depend on the {W;} values themselves, which we are trying
to obtain information about in the first place. Therefore, we
may wish to replace A1-A2 with the following condition A6
and obtain the first corollary.

A6) E[supwEAvﬂ'lG(wz Y, Uk 41, ﬂ)” < o0 and
E[supyea, #lG(w,Yi,p)|] < oo. In addition, suppose
Uks1 = ¢(Wh, Yk, ¥r), where (Yi,%x) is jointly ergodic.

Corollary 1: Suppose A3-A6. Then the conclusions of the
previous theorem hold.

One case of particular interest is where G has no dependence
on a {Y},} process. The following corollary asserts the results
of the theorem still hold but under a milder condition. We
define a new assumption:

A5') G(w,p) converges to G(w), a continuous function
for all w € A. Furthermore, for sufficiently small g,
SUPyea G(w,u) < B < oo, for some B not dependent
upon u.
Corollary 2: Suppose the algorithm form is

Wis1 = Wi + uG(Wi, Uy, 1) (12)
where {F.}, G and W, are defined as before. Assume one of
the two sets of assumptions (A1’ (or Al), A2, A3, A4), or (A3,
A4, A6), along with A5'. Then the conclusions of the previous
theorem hold.
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IV. EXAMPLES AND APPLICATIONS

This section applies the theory of the previous section to
investigate the behavior of several ACA’s. The first exam-
ple is a simple 1-D u-dependent algorithm. Its simplicity
allows a complete closed form analysis. We then analyze the
performance of some more complex (and more useful) ACA’s.

For simplicity, these analyses suppose that a target rectangle
T in the unit square [0, 1] x [0, 1] is to be covered by two
kernel functions. We fix the shape of the kernel functions and
adapt only the location parameters. Thus, the parameter vector
is a 4-tuple in all of the analyses. Then, by evaluating the G, G,
and G functions, (the update and the smoothed versions), the
ODE (11) can be readily determined. The procedure is straight-
forward, although the calculations sometimes are tedious.

Stable ODE’s correspond to well-behaved algorithms while
unstable ODE’s correspond to algorithms which will fail. In
a practical sense, stability implies that the algorithms will be
robust to noise, misclassification error, and (most importantly)
to target areas that do not exactly match the shape of the
primitive figures. For instance, if the target area is a circle but
the weights are parameterized to represent a square, then the
figure cannot exactly cover the target. Stability of the ODE
suggests that the square will center itself on the circle and
adjust its sidelength so as to tradeoff the target area uncovered
with the nontarget area covered. This is indeed the observed
behavior of the successful algorithms.

A. A 1-D Example

In order to introduce the techniques, we first present the
analysis of a very simple “u-dependent” algorithm. This
example considers a unit line segment [w — 1/2,w + 1/2]
seeking to automatically identify the target region [—1/2,1/2].
The algorithm uses a Kiefer—Wolfowitz style update which
numerically approximates the derivative of the cost function
(7). The input to the algorithm consists only of the sample
points {X}. The algorithm (8) becomes

Wit1 = Wi + yulIr(Xi) - 1]

[Ewi+va(Xe) — Kwi - /a(Xi)l/ Vi
where K.(-) = I._1/22+1/29)(-) is the indicator of the
segment [z — 1/2,z + 1/2]. Defining U1 = Xy, we may
rewrite the above as

W1 = Wi + yu[Ir(Ug41) — 1]

X [Kw, +/5(Usk+1) = Kwi - z(Ue1)]/ Vit
= Wi + uG(Wy, Ups1, ).

This is of the form of (12) of Corollary 2 where v > 0 is
some fixed parameter Uy 11 = 9 + Wy, and the {¢ } arei.id.
uniformly distributed [—1/2,1/2] random variables. Fix some
6 > 0 and assume that W (0) = Wy = wg € (—1+ 6,1 — ).
Let A= (—-1+6,1- 6)\{0}. We stop the algorithm at time
72 = {inf k:W; & A}. Denote

G(w, )
= E{G(w, U, p)}
_ {———“’ T wel-vi vl ,
—ysgn (w) wé€ (=1461-8N[-/k /u°
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It is clear that for initial conditions well away from the target,
the trajectory of the algorithm will be that of a symmetric
random walk, and that there is a “centering” force once near
the target.

To analyze the asymptotics of W,(t) = W}y, check
the conditions of the corollary. G bounded implies that
the collection {G(Wj,u} is uniformly integrable and
hence Al holds. E[(G(Wi,Uky1,1) — G(Wi,p))? <
E[G(Wyi,Ut1, 1) = E[(’qu/z—\/ﬁ@/z)(l/fk))z] =2/
Hence 2 Y4 E[(G(Wi, Ya, Ukt 1) — G(Wa, Yi, 1))
< ;ﬂ%&—; — 0, which verifies A2. A3 is satisfied
by supposition. A4 is satisfied since the {¢;} are ii.d.
G(w,pu) — G(w) = —vysgn(w) a continuous function on
K. Since G’(w,u) < 1 for all (w, u), A5’ is satisfied. In this
case, the ODE (11) is simple enough to be solved, and the
solution is W (t) = wo — vtsgn(we) 0 < t < |wol/7.

If wq is positive, then W (t) decreases at a rate ~ until it
hits zero, while if wp is positive, W (¢) increases until it gets
to zero. Thus the ODE converges to the correct answer; the
theorem ensures that the algorithm’s tendency is to follow the
ODE and cover the target area.

B. Signed Algorithm

The second example supposes that there are two squares
with fixed sidelengths d* = (d},d}) and d* = (d?,d3), and
centers s' = (s1,3) and s% = (s2, s3), which try to identify
a target rectangle with sidelengths d = (di,ds) and center
s = (s1,82). Let { X} denote an i.i.d. sequence of uniformly
distributed random variables over the unit square [0, 1] x [0,
1]. At each timestep, X} is the input to the algorithm. Let
Ky 45)(-) = Ig(ss,45)- We propose the following algorithm:
At each time step k, for each box ¢,
1) move towards the sample point if it is in the target area
and is not in any box. (I1(Xy) = 1 and K(Si’dj)(Xk) =
0 for every j.)

2) move away from the sample point if a) the sample is in
the ith box but not in the target area (I7(X;) = 0 and
K ay(Xx) = D
or if b) the sample is in multiple boxes (K(,; a:)(Xk) =
K(S{c)dj)(Xk) =1 for ¢ # j.)
In [16], the motion of the parameter estimates towards
or away from the sample point is always in the +/ —
sgn(x — s) direction, where sgn(-) of a vector indicates
an element by element operation. Note that step 2b)
provides the conflict resolution.

This logic can be stated succinctly. For the first box, the
update direction (at the k'™ time step) sgn(Xj — si) is
multiplied by

21 (Xy) = ~K (ot a0 (Xk) = K2 a2 (X ) Ir (Xi) + Ir(Xi)

while for the second box, the update in the direction
sgn(Xy — s2) is multiplied by

22 (Xi) = —K(s2,a2)(Xk) = K(a1 a1y (Xi) I (X)) + Ir(Xx)-
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Letting Wi, = (s, s3;,8%,52,)" (a four vector), the full
algorithm is then

o =)

= Wi + pG(Wk, Uk 11)

where Uy = X;.

The sgn(Xx — si)) term acts like the “regressor” or “in-
formation” vector in the LMS adaptive filter, determining
the direction that the update moves. The z! and 2% take on
values in the set {—1,0,1} and act like a signed error term,
determining whether the updates move in the plus or minus
sgn(Xy — st)) direction. Thus, this algorithm is analogous to
the well known sign-sign LMS (5) algorithm.

The first step in analyzing the behavior of the algorithm is
to find the related ODE, which can be calculated using the
fact that

E{K(a)(X)sgn(X — s")}i

—d(1)d(2) if 5(i) < —d(i)/2
= { —2d(1)d(2)3(5)/d(i) if |3(3)| < d(i)/2
d(1)d(2) if §(3) > —d(i)/2

where 3(i) = s(i) — s'(4). Letting G(w) = E[G(w, Ur41)] =
[G1(w) Ga(w)]" and w(t) = (s1(t), s3(t), s3(t), 53(¢))",
Gy(w) = E[I7(X)sgn(X — s'(t))
- K(sl(t),dl(t))(X)Sgn(X - Sl(t))
— K(o2(1),02(2)(X)Ir (X )sgn(X — s*(2))]
= E[Ip(X)sgn(X — s'(t))]
— E[K(20),02(6)(X) I (X)sgn(X — s'(1))].

Similarly,

Ga(w) = E[I7(X)sgn(X — s2(t))]
~ E[K (s (e),a:(0)(X)Ir(X)sgn(X — s°(1))].

The resulting ODE is too complex to solve in closed form,
though it can be easily solved numerically. Fig. 1(a) shows a
typical trajectory of the ODE in which the two roving boxes
lock onto the target area, moving to cover the desired region
precisely. Actual trajectories of the algorithm, of course, do
not proceed as smoothly, but the theorem assures us that they
do, on average, follow the desirable trajectory of the ODE.

C. Unsigned Algorithm

Despite the popularity of the sign-sign LMS adaptive al-
gorithm, one of its shortcomings is clear—it can only move
the parameter estimates a small (stepsize dependent) distance
at each iteration. In the adaptive filtering context, one can
usually obtain significantly faster convergence using the sign-
error algorithm or the unsigned LMS, since these allow larger
motion of the parameter estimates when far from the desired
answer. In the previous ACA, there is no easy way to “remove
the sign” from the error terms 2} and 22, since they are formed
from indicator functions. It is easy, however, to remove the
sign from the regressor vector, and update in the directions
(xy — s') rather than their signed versions. Using the same
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Fig. 1(a). Trajectory of ODE for signed algorithm, example 2; (b) trajectory
of ODE for unsigned algorithm, example 3; (c) trajectory of ODE with
Gaussian kernal function; (d) trajectory of ODE with Keifer—Wolfowitz form.

problem setup and notations as in the previous example (two
squares of fixed sidelength searching for a target rectangle),
this leads to the algorithm

ol zl
)

= Wi + pG(Wi, Uk+1)
which can be examined as before. Noting that
E{K(sg,ﬁ)(X)(X - s1)}

= / K2 a2)(z — st)dz
[0,1]x[0,1]
),
1

= 42 2 _— z — st)dz
=TT | ahee) /K(,i,ﬁ)( e

= ()EQ)s} - s}]

(13)

(x — s})dz

(o3 .4%)
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the first component of G(w) = [G1(w) Ga(w)]* is

Gi(w) = E[I(X)(X — s'(t))
= Kot (a1 (X)(X — '(2))
— K(s2(1),a2 () (X) I (X)(X = 5(2))]
= d(1)d(2)(s — s}(t))
— BK (s2(t),a2(0)(X) I (X)(X = s'(2))]

since IT(X) = K(s(1),a(t))(X)- Similarly, the second compo-
nent of G(w) is given by

Ga(w) = d(1)d(2)(s — s2(t))
= E[K (51 (8),a1 (e (X) I (X )(X = s*(1))]-

This ODE is too complex to solve in closed form, although
it too can easily be integrated numerically. Fig. 1(b) shows a
trajectory of the ODE which does not converge to the desired
target figure—the two boxes overlap significantly! It is easy
to check that the solutions of G(w) = 0 include (s',s?) =
(s+A0)*s=(A0)*), 0 < X < d1)/4 (X = d(1)/4
is the desired solution.) Such a dense set of equilibria near
the desired one virtually guarantees poor performance of this
algorithm. This was quite a surprise to us, since the unsigned
LMS is generally considered superior to the signed versions
[12], though both usually function adequately. For ACA’s,
however, the signed version functions well, while the unsigned
version fails completely. This demonstrates the usefulness of
the ODE analytical approach. We are able to state categorically
that the unsigned algorithm (13) would be a poor choice for
this problem.

D. Gaussian Kernel

This example uses the gradient approach with cost function
(7) and the Gaussian kernel

_ ot)2 — ot)2
K(St,di)(z) = exp (_(x;dli)exp<_w).
1 d2

The update function V(-) of (8) can be evaluated straightfor-
wardly since

a . .
57 K0 () = = Kgi a0y (2)2(x = 8)/d".

As in the previous two examples, consider the case where two
adaptive boxes with fixed sidelength seek to identify a target
rectangle. The algorithm is

_31
ex(s, d)K(s}c,d‘)(Xk)&kd_{‘m
en(s, d)K (g1 an) (X)) T2

Zs2
ek (3, d) K (53 a2 (X) 25

t2
ex(s, d)K(s;,,ﬁ)(Xk)XLkdg—s”L

Wit1 = Wi + 1

where ex(s,d) = 4(Ip(e,a)(Xk) = Sy Kot ary(X)):
With the algorithm (8), the associated differential equation
can be written as w = G(w), where G(w) = (Gy1(w),
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Glz(’w), Ggl(’w), ng(w))* and where
Gij(w) = 4E{(Ip(s,a)(X)
: X() - 540

- Z K(s’(t),d‘)(X))K(s'(t),di)(X)T}'
=1 2

This last expression may be further expanded into a lengthy
expression involving error functions. Fig. 1(c) shows a tra-
jectory of the ODE converging to the desired covering. All
of the starting points that we studied demonstrate this same
qualitative behavior. As a Gaussian kernel is hard to plot, we
plot instead a rectangle with sidelengths in a given direction
given by the standard deviation in that direction. Although the
kernels and target are not matched very well, the convergence
behavior of the center points is very good, indicating the
robustness of the approach to mismatch between the expected
target shape and the shape of the kernels.

E. Kiefer-Wolfowitz Type Algorithm

Lete; = (1000)*,ex = (0100),...
Then the algorithm is of the form:

,eq = (0001)*.

2
Sov/T
Wiy = Wi + T\/—(IT(Xk) - ZK(si,di)(Xk))
i=1
K51 4 Jper,a)(Xk) — K (a1 — fpzer a1) (Xk)
K (a1 4 ier,a1) (Xk) = Kot - ies at) (Xx)
K52 1 yies, ) (Xi) = K (2 fpeq a2)(Xk)
K24 es,a2)(Xie) = K(s2 - feq,a2) (X

We first need to define some notation. For a given rectangle
A, with sides parallel to the coordinate axes, define its width
in the z-coordinate direction as s, (A) = sp(A), and its height
in the y-coordinate direction as s,(A) = s1(A).

Consider the rectangle formed by the intersection of the ith
square S° with another rectangle A (either the other square
S7 or the target T). The intersection A N S* is of course
another rectangle. If the right (left, top, bottom) side of S*
intersects A NS¢, set A;‘(:’t’b) = S5 (AN S¢) (otherwise
set ATA(i"t’b) = 0).

One needs to take the expectation of the term in the
parentheses of the algorithm, divide by /i and take the limit
as ¢ — 0. One obtains after a little effort
A%y — Ay = Ay + A;sn
Afy = AFy — Ay + AZS‘21
Ay — A§‘2 — Ayt Aflz
Dby = Ay = Ay + By

w =

Fig. 1(d) shows a trajectory of the ODE which is converging to
the desired covering. All of the starting points that we studied
demonstrated the same sort of behavior.

V. EXPERIMENTS AND SIMULATIONS

The examples of the previous sections verify that for simple
problems in which the target can be exactly covered by the
moving shapes, certain of the ACA’s behave well. This section
presents simulated evidence that the ACA approach is actually
applicable to a much larger class of problems.



BUCKLEW AND SETHARES: THE COVERING PROBLEM

+re s
e
+ee

e s

PEEEEIES
PR TS

LR R
FEEEEIII I I P L
+ .
.;j

TEEPEIEe
+reee e
+reees

PO N

2623

JqresdHeeeresresp. - ...

CEXE & IR R RN 3
+redHrert b st
Jere

JqreetHeesserreesh

Fig. 2(a). Automated learning algorithm: Two rectangles trying to match an inverted T.

We first used the “signed” algorithm in which a vary-
ing number of rectangles are adapted to attempt to match
an “unknown” target shape which is an inverted 71" shape.
Fig. 2(a) shows two adapting rectangles which successfully
converge to cover the desired figure after (about) a thousand
iterations. Each iteration consists of some logic and some
additions, so that the computational burden is not onerous.
Fig. 2(b) shows three roving rectangles that try to match the
inverted T" shape, although 10% of the points are randomly
misclassified. That the rectangles can do such a good job in a
high noise setting argues for the robustness of the algorithm.
Fig. 2(c) examines the effect of overparameterization, where
five moving rectangles are adapted to cover the inverted
T. There are no catastrophic effects of overparameterization,
though there is somewhat more jiggling about before conver-
gence occurs. Fig. 2(d) shows the time simulation using the
Keifer—-Wolfowitz style algorithm of section IV-E.

VI. CONCLUSION

This paper has introduced a family of algorithms for the
automatic learning of complex decision regions which are
inspired by adaptive filtering algorithms. These have been
analyzed, and the behavior of the algorithms has been related
to the evolution of a deterministic ordinary differential equa-
tion. When the ODE is stable, the algorithms converge to a
region about their (possibly local) optimum. When the ODE
is unstable, the algorithms will misbehave. Several simple
examples were given to verify the applicability of the analysis.

The work in this paper suggests several possible avenues for
further investigation.

One of the major tasks is to generalize the algorithm class
to more realistic problem settings. The specific algorithms
presented here all operate in a binary environment; the new
sample point is either inside or outside the target region. It is
clearly possible to generalize this to handle grey scale (or other
multilevel targets). Similarly, one could create algorithms
in which the primitive shapes are adapted to textures (for
instance, the Fourier transform near the sample point could
be used in place of the indicator function).

A second major task is to deal with the local nature of the
algorithms. One approach is to initially overparameterize the
problem (use “too many” primitive shapes), and to then allow
shapes to “die away” or disappear if they fail to capture an
appropriate number of target points. An alternative is to use
a fixed number of shapes which can die away, but to allow
the possibility of resurrection. Both of these schemes work
quite well (in simulation) to avoid local minima. Analysis
of the schemes is tricky because of the introduction of the
discontinuous switch (the alive or dead indicator) and the
discontinuity of the parameter vector in the latter method.

The algorithms presented here are a start toward a solution
of the covering problem, and the analysis technique gives clear

-evidence that theoretical results are possible.

APPENDIX

Let 7,4 be any two probability measures on some metric
space (S,d) where d is the metric. Let B(S) denote the
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Fig. 2(c).

p(n, )

{z €

Borel sets of S. For a set A € B(S), define A

inf{e > 0:n(F) < (F¢) + e for all F € C}

is the collection of closed sets of S. p can be shown

where C

S:infyca d(z,y) < €}. Define a distance measure between

any two probability measures on (S, d) as
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Fig. 2(d). Keifer-Wolfowitz style algorithm of Section IV-E.

to be a metric, and is called the Prohorov metric for the space
of probability measures on S. When a sequence of probability
measures 7,, converges to another probability measure n under
this metric (i.e., p(7,,1m) — 0), we say that 7, converges
weakly to n. The topology (i.e., the open sets) created by the
Prohorov metric is called the topology of weak convergence.
In the case when S = R", weak convergence of probability
measures corresponds exactly to convergence in distribution.

Consider the space Dg-[0, 0o) of right continuous functions
with left limits. The trajectories of the random processes
{W,(t)} lie in this space. One would like to define a distance
measure for this space for which it will be a nice (separable)
metric space. The metric ds(-, -) that is typically used is called
the Skorohod metric. The topology created by this metric is
called the Skorohod topology. The actual definition of the

metric is complicated. However, for the case of measuring the
distance between two continuous functions f, g € Dx-[0, o0),
it corresponds to a weighted “sup” norm, i.e.

ds(f.9) =/(;

Let (S,d) be a complete separable metric space and let
M(S) be the space of finite measures on S with the weak
topology. Let £(S) be the space of measures on [0,00) x S
such that for every u € £(S), u([0,t] x §) < oo for each
t > 0. For ¢ € £(S), let u* denote the restriction of 4 to
[0,£] x S. Let r, denote the Prohorov metric on M([0,¢] x )
and define 7 on L(S) by

7, v) = /0 exp(—t)1 A re(pf, vh)dt.

oo

exp(—w)1 A sup [I£(t) - g(t)]|du.
0<t<u
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C(A) is defined as the space of all bounded continuous-
functions on the metric space A. For a metric space F, let
Dg[0, 0o) be the space of right continuous E-valued functions
with left limits endowed with the Skorohod topology. See [4]
for further definitions and properties of this space.

We first state a necessary lemma.

Lemmal Let {(zn,p)} C Dg[0,00) x L(S), and
(€, ptn) — (z,p). Let b € C(E x S). Suppose further that
h.. converges uniformly to h on E x S. Define

u4ﬂ==1;15h4zusxwu4dsxdw,

u(t) = /[0 i h(z(s),y)u(ds x dy).

Let 2,(t) = p,([0,2] x S) and 2(t) = p([0,] x S).
If z is continuous on [0,%] and lim, .o 2.(t) = z(t), then
lim, oo u, (t) = ult).
Proof: The proof is given in [3].
Proof of the theorem: Let M,, be the martingale defined by

[t/ul
M,(t) = Y (G(Wi, Y, U, 1) = G(Wi, Yie, 1))
k=1
Note that
[t/n]
Wyu(t) = W(0) + M,.(t) + Z G(Wy, Yie, p)p-
k=1

A2 states that the quadratic variation process of M, is con-
verging to zero. Hence, it follows that M,, = 0. By (lemma 7
on p. 51 of [8]), Al implies that V, = W/ G(Wi, i, )
is relatively compact. This fact and A3 give us relative
compactness of {W,}.

Define a measure on i x E as

[t/p]-1
L0, x By= Y Is(Ye)p.
k=0
By ergodicity, ', — m X vy. We may then write
Wi(t) = Wol0) + Mu(t)
-I—/ C;'(W“(s_),y, wT . (ds x dy).
[0,t}xE

We may suppose by the Skorohod embedding theorem that
(W,, M,) is converging (on some other probability space)
almost surely to (W,0), where W is some random process
on C[0,00). For each w in that probability space, W, (t,w) is
converging (as a sequence of functions) to W (¢,w) € C|[0,00).
Also for each w,I',, — m X vy. Hence by the lemma, W(t,w)
must satisfy

W(t,w) = wo + /

[0,t]xE

= wp +/0 G(W(s,w))ds

é(W(s, w),y)ds X vy(dy)

which is a deterministic ODE. Since this behavior is almost
sure in this other probability space, we have the asserted
relative compactness and limit point behavior in the original
space. O
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Proof of Corollary 1 We need only show that M,, = 0.
Consider bounding the increments of M, (t)as follows:

sup [ M, (t+s) — M)
s<h

[(t+h)/p] .
S Z sup |G(w1 Yk7 Uk+11 H)' + sup IG('LU, Yka /J‘)l
k=[t/pl+1 weK weK

— H[E[sup |G(w, Yi, Uks1,w)[] + Elsup |G(w, Yep)ll]
weK weK
=Ch as
This bound will be uniform for ¢ < T almost surely. Therefore

lim sup supsup |M,(t + s) — M,(t)] L Ch
p—0 t<T s<h

which implies that {M,} is relatively compact. The same-
bounding technique shows that the total variations up to time
t are bounded in L;. The martingale property then implies
that M, = 0.

Proof of Corollary 2 We suppose that K = R". Otherwise,
work with the stopped process. Note that

W, (t) = W, (0) + M(t) +/0 G(W,(s7), m)ds.

By a Skorohod embedding we may suppose that (W, M) —
(W, 0) almost surely. The first part of AS" implies for each
w, G(W,(s7), 1) — G(W(s)). The second part of A5’ that
[y G(Wu(s™), wyds — f; G(W(s))ds, by the dominated con-
vergence theorem. The remainder of the argument is identical
to the theorem proof. O
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