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Dynamics of an Adaptive Hybrid

William A. Sethares, Member, IEEE, and Iven M. Y. Mareels, Member, IEEE

Abstract —Adaptive hybrids are one way of canceling the echo path in
telephone systems. This paper conducts a bifurcation analysis of a
simplified model of an adaptive hybrid using two bifurcation parame-
ters, the adaptive stepsize and the ratio of the two inputs. As these
parameters vary, the system exhibits a wide variety of behaviors, includ-
ing stable and unstable equilibrium points, stable and unstable periodic
orbits, and aperiodic orbits. The underlying bifurcations include Hopf,
flip, period doubling seq es, and a d ate global bifurcation
which gives rise to some very complex dynamics. For inputs with a
spectral density, conditions are derived under which a single stable
(averaged) equilibrium exists.

These results have two interesting points of view. From the practical
side, they provide an explanation of the intermittent bursting behavior
of adaptive hybrids, demonstrating that bursting can be due to a slowly
attractive periodic orbit (in which case the bursting eventually dies
away), to a stable aperiodic orbit, or to a strange attractor (in which
cases the bursting persists). From the theoretical side, these results are
interesting because they provide a “real world” example exhibiting a
rich variety of nonlinear behaviors. Due to the particular form of the
model, many of these behaviors can actually be proven.

I. INTRODUCTION

DEVICE called a “4:2 hybrid” is used in telephone
Asystems to transform the four-wire long distance re-
ceive and transmit lines to and from a two-wire local line. An
ideal hybrid would move all the incoming signal from the
four-wire receive line to the two-wire local line, and simulta-
neously move the outgoing signals from the two-wire local
line to the four-wire transmit line. In a real device, however,
some of the energy in the incoming line will inevitably leak
into the outgoing line. One solution, called adaptive echo
cancelation [1], uses an adaptive filter to match, or identify,
the dynamics of the leakage path (see Fig. 1). When the near
end speaker is silent, and when the adaptive filter has
matched the transfer function of the hybrid, 3 will equal y,
their difference is zero, and the echo of the far end speech is
canceled. The adaptive solution to the hybrid problem is well
established, and has been used successfully in a wide variety
of situations [2].

1.1. Problem Description

In certain situations, however, an intermittent “bursting”
or “chirping” or “bumping” misbehavior arises. This was
first brought to our attention [17] by a series of laboratory
tests at Tellabs Inc. which were designed to investigate the
adaptive hybrid system when the received signal is signifi-
cantly correlated with the near end signal within the time
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Fig. 1. Basic adaptive hybrid.

window of the adaptive filter. Such correlations become
increasingly likely as the adaptive hybrid is used on commu-
nications lines of shorter length. The real time tests utilized
a 20-tap adaptive hybrid at the near end of the line and a
simple (nonadaptive) hybrid at the far end, giving 6-dB
attenuation around the loop. Independent narrow-band mo-
dem signals were injected at each end. Long periods of close
match between the output of the adaptive hybrid and the
echo path were observed, and the hybrid appeared to be
functioning well. Suddenly and with no warning, the system
would begin “singing”, the signals degenerated into wild
oscillation, and then the system would quickly restabilize.
These bursts were intermittent and had no apparent cause.

In [3], a simple model of the hybrid was introduced and it
was shown that a similar bursting occurred in the model due
to a lack of “persistent excitation” combined with the inher-
ent feedback structure of the adaptive hybrid telephone
system. The bursting cycle was characterized by a long linear
drift phase, followed by large oscillations that quickly restabi-
lize, returning again to the drift phase. It was conjectured
that certain combinations of excitation might lead to chaotic
behavior. This conjecture is examined in the present paper,
and numerous nonlinear behaviors are revealed, some of
which may occur in physically reasonable situations. The
bursting is revealed to be either a region of stable aperiodic
orbits, a marginally stable two periodic orbit or (perhaps) a
strange attractor, depending on the relative magnitudes of
the two inputs to the system, and depending on the adaptive
stepsize parameter. Unravelling the behavior of this model
leads to insights concerning how to avoid such bursting
misbehaviors. One approach, using coded inputs, is sug-
gested in [19].

The next subsection derives the model for the adaptive
hybrid in the form of a two input, two state discrete mapping
F. The inputs represent the near and far end transmission,
while the states are the loop gain and the received signal.
The physical meaning of the bifurcation parameters u (the
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Fig. 2. Single adaptive hybrid.

adaptive stepsize) and « (the ratio of the inputs) are dis-
cussed, and the interpretation of « as a degree of excitation
is proposed.

Under the simplifying assumption that the ratio of the two
inputs is constant, Section II carries out a bifurcation analy-
sis by finding the equilibria of F and examining their stabil-
ity, and by finding the two periodic orbits and examining
their stability. Several types of bifurcations are found, includ-
ing Hopf, flip, and a degenerate global bifurcation. For large
values of the bifurcation parameter, unwanted instabilities
due to a “large stepsize” are encountered. These are over-
come by a reparameterization of F that allows the analysis
to continue to « at infinity.

Section III analyzes the behavior of the adaptive hybrid
model for more general inputs by defining an averaged
equation which approximates the behavior of the real system
under certain operating conditions. For inputs with a spec-
tral density, a condition is derived which ensures the exis-
tence of a stable averaged operating point. The special case
of sinusoidal inputs is examined concretely to give conditions
on the magnitude and frequencies which ensure that this
condition is fulfilled. Failing these conditions, the averaged
equation (along with the hybrid itself) will leave the stability
region, causing the bursting behavior.

Section IV presents extensive simulations and diagrams
that comprehensively explain the adaptive hybrid system
when excited by constant inputs. Combined with the analysis,
these pictures allow a reasonable explanation of the bursting
phenomenon as one of three possible behaviors, depending
on the conditions under which the system operates. The final
section presents our conclusions and relates this analysis to
examinations of the “bursting” phenomena in other adaptive
systems [4]-[7], [11]-[15].

1.2. Technical Formulation

The system will be modeled in the simplest possible man-
ner as in [3). A single parameter adaptive hybrid at the near
end attempts to cancel the echo of the far end speech. At the
far end, a (nonadaptive) hybrid is modeled as an attenuation
B and a delay. Please refer to Fig. 2, where 7, / w, represent
the near/far end speech, & represents the echo path at the
near end, and r, /x, represent the received /transmlttcd
signals at the near end. The adaptive parameter / is updated
with the standard least mean squares algorithm:

B+ wxrey, (1.1)

hk+1

where p' is the adaptive stepsize. The transmitted signal,
containing the near end speech, the leakage from the far end

speech, and the output of the adaptive filter is

Ter1= Y1~ Yir1FT Okt

- hx, (12)

Introducing the parameter error h, = h — #, and substitut-
ing (1.2) into (1.1) yields

— A+ gy

Py =h = wxih, — wx b, (1.3)
while x, itself is composed of
X1 =Wyt Bl
= Bhyxy + By + Wiy (1.4)

The equation pair (1.3) and (1.4) is a two-state (1, x;)
nonlinear equation with two inputs, 7, and w,. With ¢, = 87,

and h, = Bh,, this is equivalent to the mapping F: R?— R?,

hy +v+w ) (1.5)

y
F =
(h) (h—uyzh—;wy

The analysis of (1.5) begins in Section II with a special case
—a “dc” or steady-state analysis in which the inputs are held
constant, and is then expanded via an averaging argument to
consider more general inputs in section III.

Reparameterize (1.3)-(1.4) with v, =v and w, =w for
every k. Let p= [J,/W , a=Buv/w, h,=Bh,, and y, =
x, /w. The system is then

hy+a+1 ) (1.6)

y
F =
(h) (/1—/.Ly2h~p,ay

In (1.6), & and y represent the states of the system (4 is
the loop gain, y is the received signal), while x and « are
the bifurcation parameters. Physically, u represents a scaled
version of the stepsize of the adaptive algorithm, while « is
proportional to the ratio of the power of the two constant
inputs v and w. Since u' of (1.1) is a parameter chosen by
the system designer, and since an upper bound on v and w
are dictated by the physical properties of the telephone
system (size of wires, maximum voltage swings, etc.), the
analysis focuses mainly on “small” u. It appears that the
large p case will exhibit regions of period doubling leading
to chaos much as the large stepsize adaptive regulator of [4]
leads to such behavior, though we have not pursued a
detailed analysis here.

The parameter a, however, has no such natural limitations
on magnitude, since the ratio Bv /w can reasonably assume
any real value, with small w corresponding to large a.
Speaking imprecisely (but nonetheless reasonably), small «
correspond to a high degree of persistence of excitation of
the adaptive algorithm, while large a correspond to a low
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Fig. 3. Phase portrait behavior when = 0.

degree of excitation. It is, of course, the latter which exhibit
the more exotic (mis)behaviors. Since the excitation levels
cannot generally be manipulated by the system designer,
such exotic behaviors cannot be ruled out in applications.

II. STEADY-STATE ANALYSIS

Despite the apparent simplicity of the single parameter
adaptive hybrid system (1.5), a complete analysis for all input
pairs v, and w, is beyond the state of the art. A logical
starting place is to consider the special case when the inputs
are held constant as in (1.6). One many justify this simplifica-
tion conceptually by supposing that the constants represent
an averaged power of the inputs or one may recognize that
an understanding of the behavior for general inputs requires
an understanding for simple inputs. Even with this simplifi-
cation, the behaviors exhibited by (1.6) are barely tractable.
This section conducts a bifurcation analysis in the two vari-
ables p and a (stepsize and ratio of the inputs), which
proceeds by fixing u and examining the behavior of the
system for various values of «, and then by fixing a and
studying the system as p varies.

2.1. The u=20 Case

The simplest version of (1.6) is when the adaptation is
frozen with a zero stepsize. Though physically uninteresting,
this case already exhibits some nontrivial behaviors. With
u =0, (1.6) becomes

F(y) _ (hy+a+l)7
h h
which has equilibria at y*=(a+1)/(1—h*) and h* arbi-
trary (h* # 1). This equilibrium is stable when |h*| < 1 (though
not asymptotically stable in the % direction) while it is
unstable for |h*| > 1. When A* = 1, the map is a pure integra-
tor and hence is unstable (except for the singular point
a=-—1). At h*=—1, (2.1.1) is again stable (though not
asymptotically in either h or y).

For h*=—1, there is also a family of stable 2 periodic
orbits, since y, ., = y;. This information on the behavior of
(2.1.1) is presented graphically in Fig. 3. Clearly, when A is
allowed to vary by considering nonzero u, the behavior of
the system will be at least this complicated, involving both
equilibria and periodic orbits.

(2.1.1)

2.2. Fixed-Point Analysis

A natural place to start the bifurcation analysis of F of
(1.6) is to determine how the equilibria of the mapping
change in response to different values of the adaptive step-
size u and the ratio a. For a# —1 and p+#0, F has a
unique fixed point at

y*=1
h*=—-a. (2.2.1)
For a = —1 there is an isolated fixed point at
y*=1
*=1 (22.2)
and a subspace of fixed points at
yr=0 (223)

h* arbitrary.

The stability of the isolated fixed points can be addressed
by examining the eigenvalues of the Jacobian of F, which is

y
DF(y,h) = . (224)
(v #) ( —2uyh — pa 1—uy2)
With y* and A* as in (2.2.1), DF(y*,h*) is

-« 1
( pa - M) (2.2.5)

which has characteristic equation
stH(a—1+p)s—a. (2.2.6)

Applying the Jury test for stability [10] shows that the
magnitude of the roots of (2.2.6) (and hence the eigenvalues
of (2.2.5)) are less than unity if and only if

a>-—1
uw>0

a<l-—p/2 (2.2.7)

are satisfied simultaneously. This region is shaded in Fig. 4.
All points on the boundary of this region are bifurcation
points, since they represent values of a and/or u for which
the magnitude of the eigenvalues of (2.2.5) are exactly unity.

When u =0, (2.2.5) reduces to an upper triangular matrix
with diagonal elements 1 and — e, indicating a global bifur-
cation. This is the vertical axis in Fig. 4.

For u <0 and w >4 there are no critical points and the
system (1.6) is always unstable. These have simple physical
explanations, Negative u corresponds to a reversal of the
sign of the adaptation gain, while u >4 corresponds to
instability induced by violation of the “small stepsize” re-
quirement.

For 0<u <4 there are exactly two critical points, at
a=1—p/2 and at @ =—1. When a=1-p /2, (22.6) can
be factored as (s +1)(s —1+ u /2). The root at —1 indicates
that these are flip bifurcations. We will see that these flips
shed a two periodic orbit as C2 is crossed. The critical point
where o =1 and p =0 (CP1 of Fig. 4) is at the intersection
of the line of global bifurcations CO and the line of flip
bifurcations C2. Thus CP1 is a degenerate flip bifurcation
with eigenvalues 1 and —1.

The dynamics at the a=—1 line are somewhat more
involved. With y* and h* at the isolated fixed point of
(2.2.2), the characteristic equation of the Jacobian is 52+
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Fig. 4. Bifurcation diagram a versus u.

(=24 w)s +1. This has roots at

iau — p?
s=E—t
2 2
which have unity magnitude. Generically, this is a Hopf
bifurcation with both eigenvalues on the unit circle for
0<u<4. We will see later that this leads to a “circle” of
aperiodic orbits for « close to but less than —1. As u varies
from 0 to 4, the roots move around the unit circle through
the whole spectrum of possible Hopf bifurcations. Degenera-
cies occur at u =0 (CP2 with double 1 eigenvalue), at u =2
(CP4 with eigenvalues + / —1i), at p =3 (CP3 with eigenval-
ues at —0.5+ /-3 /2), and at u =4 (CPO with a double
eigenvalue at —1). These critical points are degenerate Hopf
bifurcations.

CPO is a very special point. It sits at the intersections of
the line of flip bifurcations and the line of Hopf bifurcations,
and has two eigenvalues at — 1. It is thus a Hopf and a flip
and a global bifurcation all at once! The Jacobian of F at
CPO is

5)
-3

which has only one eigenvector (1, —2) and a generalized
eigenvector (—0.4, —0.2). Thus CPO is a crucial point, an
organizing center [13], and indicates the possibility of chaos
in this neighborhood of parameter space.

1
FCP0=(_4

2.3. Two-Periodic Analysis

There is a stable equilibrium only for values of « within
the triangular region of Fig. 4, defined by (2.2.7). What
happens outside this region where there are no stable equi-
libria? When there is a no stable fixed point, the next
simplest possible behavior is that there might be low period
orbits. The flip bifurcation indicates the existence of two-
periodic orbits for systems whose parameters are above (but
close to) the C2 line of Fig. 4. This is further enhanced by
noting the existence of the two-period orbits in the frozen
system (u = 0 case). The search for two-periodic orbits can
be pursued by noting that F2: R? - R? can be calculated
directly from (1.5) as

This section focuses on the small stepsize case when 0 <
<1, allowing us to locate periodic orbits to within O(u) (or
better) when exact expressions are forbidding. Pictorally, the
analysis concentrates on the thin slice of Fig. 4 near the
vertical axis. This small stepsize region represents the normal
operating region of the adaptive hybrid system.

Period 2 orbits of (1.5) are the fixed points of (2.3.1). Of
course, (2.2.1)-(2.2.3) are all fixed points, but are there
others? At equilibrium, and assuming that y(h -1 +(1+ &)
# 0 (which would yield a fixed point instead of a two
periodic orbit), this term can be canceled from the first line
of (2.3.1), yielding

h=—1+0(p). (232)

This is not surprising. For u =0, h= -1 gives rise to a
two-periodic orbit. (2.3.2) shows that some of these orbits
persist for nonzero u. Substituting (2.3.2) into the second
line of (2.3.1), and looking for equilibria gives

+a)

y2—(1+a)y+ a +0(u?)=0. (233)

This can be solved to within O(w) using the quadratic
formula:
1+a a’—1
= +—
YT E T,
Assuming that —1 <& <1— u /2, the solution is imaginary,
indicating that there is no two periodic orbit. For |a|> 1,
(the region of interest, for which the equilibria are unstable),
the two solutions to (2.3.4) are real. Designate these solu-
tions y, and y,. Then the corresponding 4, and h, are
hy=—1+bu+0(p?)
hy=—1+byu+0(p?) (2.3.5)
where b; and b, are determined by substituting the h;
values of (2.3.5) into the first line of (2.3.1). This gives
nyi—a)(y—1-a)
1+a—2y,

(2.3.4)

by

p, = 2202 @)y, —1—a)
2 1+a-2y, '

(2.3.6)

The corresponding two-periodic trajectory alternates be-
tween (hy, y,) and (k,, y,) to within O(u?) for 4 an to within
O(p) for y. To make this somewhat more concrete, consider
the following.

Example 1: With @ =1.2 and p =0.01, y, =1.4316, y,=
0.7683, and hence b, =0.38417, and b, =0.71583. The pa-
rameters h, and h, are then —0.99616 and —0.99284.
Simulating (1.5) directly (or simulating (1.3)-(1.4) with ap-
propriate substitutions), and waiting 50000 iterations leads
to the two-periodic solution (—0.9962, 1.4395) and (—0.9928,
0.7660). Note that all numbers are within the prescribed
accuracy.

Example 2: With &= ~1.2 and p =0.01, y, =0.2317, Vs
= —0.4317, by = —0.2158, b, = 0.1158, and &, and h, can be
calculated as —1.002158 and —0.9988417. Simulating (1.5)

yh2+(1+a)(h+1)—,uy(yh+l+a)(yh+a)

y
F2( )= ’
h (h—u(y2h+ya+a(yh+1+a)+h(yh+1+a)2)+y.2y(yh+1+a)2y(yh+a)

T ——

(23.1)
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directly, with this value of «, the simulation does not settle
into a two-periodic orbit even after 25 million iterations! See
Fig. 5.

The stability of the two-period map can be determined by
the eigenvalues of the Jacobian of the two iteration map.
Since DF*(y,,h,)= DF(y,, h;)DF(y,, h,), this is

1= p(by+by)+2uy,y, — nay;

—2py, +2py; 1-
The characteristic polynomial of (2.3.7) may be expressed as
s?+a,;s — a, where

ay= *2+M[b1+b2+()’1*)’2)2
—2yyp +a(yy+v,)] + O(w?)
az=l-p[b1+b2*(y1+)’z)2
+2y,y,+a(y, +y2)] +0(u?).
Using the definitions of y, and y,, these can be rewritten
a;=—2+p(b,+b,)+2u(a®—1)
ay=1-pu(b,+b,). (2.38)

Recall that b, and b, are defined in (2.3.6) in terms of y,
and y,. At @ = +1, b;+ b, = 0. The corresponding value of
a, is 1, indicating that these values are critically stable. In
fact, « < —1 implies that b, + b, <0, which demonstrates
that the calculated orbit is unstable as a two-periodic orbit.
For a > 1, b| + b, is greater than 0, indicating that this is a
stable two-periodic orbit. Indeed, this explains the behaviors
observed in Examples 1 and 2. The first example is within
the stability region for the two-periodic orbit, and hence it
converges to this orbit. This illustrates the effect of the flip
bifurcation at @ =1—pu /2 in which the stable equilibrium
for 0 <a <1—p /2 is transformed into a stable two-periodic
orbit when « > 1. Example 2, by contrast, is in the region
where a two-periodic orbit would be unstable. Hence the
time behavior cannot converge to this solution. Fig. 5 shows
a phase portrait for this example. The two points of the
calculated orbit are the tiny x’s inside the two fuzzy ovals.
The trajectories jump from oval to oval at each iteration.

T1

a=-12.

This is the effect of crossing the Hopf bifurcation at a = —1.
We will have more to say about this figure later on.

How large can « get and still retain stability of this two
periodic orbit? for a > 1, y,~a +1/2, y, ~1/2, and hence
b, + b, is approximately 3/4a. When a, of (2.3.8) becomes
larger than 2, then the roots of the characteristic polynomial

Yi— Y2+ ubiy,—puy,v3

(23.7)
w(y}+y2)+2uy,y, —nay,

+0(p?).

will have magnitude larger than unity. This occurs when

a?+3/8a—-2/u>0. (23.9)

For u=0.01 (as in Examples 1 and 2), this gives a ~14.
Simulations show a bifurcation point at a =13.8, when a
four-periodic orbit comes into existence. We suspect that this
is the beginning of a period doubling sequence leading into
chaos, as suggested by the simulations in Fig. 11. Physically,
this can be interpreted as a violation of the “small stepsize”
assumption. Note that as u is decreased, (2.3.9) implies that
the two periodic sequence remains stable for larger and
larger a.

The stepsize induced instabilities of the previous para-
graph for large a are a result of the way the system has been
parameterized. If o =8v/w assumes a large value by w
being very small, then u = u'/w? must be large. In order to
investigate the system for vanishing w and small stepsize,
consider the following alternate parameterization of
(1.3)-(1.4), where v, =v and w;,=w are again assumed
constant. Using fi = u'B%v?, g, =Bhy, z;, = x, /B, and y
=w/Bu, this is

G( ARAR

§—pz'g—puz
Small y correspond to small w. In fact, y is the inverse of «,
and we can consequently investigate the behavior of the
system for infinite « by investigating (2.3.10) for y near 0.
Mimicking the analysis for F, we find

z
DG(z,g) = ( iz —i 1_1122). (2.3.11)

When y # 0, there is an equilibrium at z=vy, g=-1/7,

z zg+y+1

4 (2.3.10)
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which has characteristic equation s%+(1/y —1+ ay?)s —
1/, indicating instability for [y|<1. At y =0, there is no
finite equilibrium, but there is a two-periodic orbit, which
alternates between (—1,1) and (- 1,0). For small but nonzero
v, there is a two-periodic orbit at

g =-1+ 0(')’2)
82=—1+(a/2y)+0(»?)
21=1+y/2+0(v?)
z,=v/2+0(y?).

The stability of this orbit can be investigated easily using

(2.3.11), that is, DG*(z,, g,) = DG(z,,8,)DG(z,, g,), which
gives

1-4

. . . _ . _ |+o(¥?).

B =2 -y+ay+05a%y 1-4G-05ay (r)

(2.3.12)

The characteristic equation of (2.3.12) is then s? + a;5 — a,
where

a,= —2+2[L+%+0(72)

3
a2=1+‘y(177“)+0('y2). (2.3.13)
Consequently, for small positive y, (and & <2/3), the two-
periodic orbit is stable, while for small negative vy, the orbit
is unstable. The y = 0 point, with a,=1and a,=-2+24,
is a nondegenerate Hopf bifurcation, since the eigenvalues
cross the unit circle close to (but not at) the —1 point.

III. THE AVERAGED SYSTEM

The behavior of the adaptive hybrid model (1.5) can be
analyzed for more general input signals using nonlinear
averaging theory as in [9], simplifying and extending the
analysis in [12]. This approach defines an averaged equation
which holds for small x on a timescale of O(1/u), to which
the behavior of the full system can be compared. The aver-
aged equation is examined for inputs which have a spectral
density, and two examples are given. In the steady-state case
the averaged analysis is less precise than the analysis of
Section 2.3 but estimates of the region of attraction are
obtained. When the inputs are sinusoidal, conditions on the
relative magnitudes and frequencies of the inputs are de-
rived which ensure the existence of a stable operating aver-
aged equilibrium. Failing these conditions, the averaged
equation (and hence the hybrid system itself) will leave the
stability region, causing the bursting behavior.

Consider (1.5) with given initial conditions y, and k,, and
define xf, (k) for |h| <1— € where 1> ¢ >0 as

xiE(h) =hxE(h) + v, +w, 3.1)
with x§ =y, By introducing z, =y, — x#(h) (with z,=0),
(3.1 and the first line of (1.5) can be shifted to the origin as

By, dx*(hH)
Zier=z2phy — xFE(h) (B — b)) — hk_[ e dh
e dh

(3.2)

where the integral expresses the difference between

xi#(h, 1) and x#(h,). The second line of (1.5) then becomes

hyir= (1 —ulz+ Xff(hk))z)hk — uor( zi + X7 (hy))-
(33)

Note that x¥(h) and (D, x*(h)), are bounded whenever v,
and w, are bounded and |h|<1—e. If x, and xj(h) are
O(1), then z, of (3.2) is O(w). Thus as long as |h,|<1—e¢,
(3.3) can be rewritten

Pyor= (1= pxp(h) )by — pox(h) + 0(u2). (3.4)

Consequently, the loop gain A, of the adaptive hybrid system
(1.5) can be approximated up to first order in u over the
timescale O(1/u) by the averaged equation

R = (1= uf(RE) R — ne(h) (3:5)

provided |A}| <1—e. The error made in the averaging pro-
cess is |k, —hjl=0(8(n)) over a timescale of O(1/u),
where 8(u) is an order function in u. Hence the system loop
gain h; remains in D =(—1+¢,1—€) as long as A} remains
in D*=(—1+¢€+ 8(u),1— € — 8(w)). In principle, it is pos-
sible to do a little better, with x; in a domain of O(1/pu%)
for 0 <@ <1, which gives z, as O(u!'™®). This yields the
same averaged equation, but with a worse 8(u) for the
h, — h§ approximation.

If f and g cause (3.5) to have an attractive fixed point in
D*, then the timescale can be extended to infinity. On the
other hand, one expects that if A} eventually leaves D*,
then A, will also leave D, and instability will result, at least
locally. If 4} has an attractor outside D* (and none inside),
then A, will also be driven from D. In short, the behavior of
the averaged system (3.5) reflects the behavior of the whole
system. For certain classes of f and g, it is possible to
explicitly verify these assertions.

3.1. Steady State Reuvisited

To understand the advantages (and limitations) of this
averaging approach, consider again the case of dc signals.
With v, =v and w, =w for all k, (3.1) can be iterated to
obtain

v+w
xf(h)=hkx0+ﬁ+0(hk). (3.6)
For |h| <1— e, the steady-state convergent solution is x* =
(v +w)/(1—h). For x§ which are O(1) (and consequently
for z, which are O(u)), and following the logic of (3.2) to
(3.5), the loop gain k, can be approximated to first order in
u over the timescale O(1/p) by

Fh ) v+wy? v(v+w) 17
()-(—#(1_,,)) e EE)
The fixed point A*=— v /w is stable if v and w are such

that [v/w| <1—e and if 4 <2/x*2 (A consistent choice for
the approximation error made in the averaging process is
e=08(p)=pu!3).

Fig. 6 plots F(h) versus h giving a vivid picture of the
dynamics of (3.7) for v and w > 0. Initializing A to the left
of 1—¢, the map iterates down towards the equilibrium
—v/w. If the mapping is initialized to the left of —v/w,
then the value of £ is increased. Thus, for — v /w and A in
(—1,1- ¢), the system converges to its equilibrium. Overall,
in this simple dc case, the analysis is less precise than the
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Fig. 6. Region of attraction v, w > 0.

direct methods of Section II, but it gives a good approxima-
tion to the region of attraction of the equilibrium, something
obtainable by no other method (of which we are aware).

3.2. General Inputs

The averaged equations (3.1) and (3.5) can be used to
evaluate the behavior of the adaptive hybrid whenever the
inputs v, and w, have a spectral density. For a given A, (3.1)
is a linear time invariant system with input v, +w;, and its
power spectrum is readily expressed in terms of its transfer
function and the spectrum of the inputs. Parseval’s theorem
can then be used to evaluate the averages of f and g in (3.5)
as

1 = 1 . 2
Jh) =5 [ V) e WO dw

1 = 1
() =5 [ V(Y (w) + W (jw)) dw (3:8)

If, in addition, the two inputs are uncorrelated (have differ-
ent support in the frequency domain), then the cross terms
in (3.8) average to zero, and

1 =
fW=5-f e

L B, S BN
g )~21rf-w|—e"_w*—hi‘ (jw)|"dw.

(IVCw) P+ W Cw) ) dw

(3.9)

Such decorrelation is quite reasonable in view of the applica-
tion. Note that f and g are well defined and differentiable
whenever |h]|# 1. The equilibrium of the averaged system
(3.5) are then solutions of

F(h)=hf(h)+g(h)=0. (3.10)
Combining (3.9) with (3.10) gives the equilibria of the system
as those values of A for which
1 = BWGw) e V(im)|
F(h)y=— - + - dw =0.
() 211"[—7 le™ — hl? le™ — h|? ¥

(3.11)
Suppose there are k& and h such that

—1+e<h<h<l-—ewith F(h)>0 and F(h)<0
(3.12)

then the averaging is valid and the solutions are well defined.

Tl

Thus there is an & with & < < h such that (3.10) holds. The
interval (h,h) is invariant under the flow of the averaged
system for sufficiently small u, and there is at least one
stable averaged equilibrium. For p small enough, and with
appropriate initial conditions, the system will converge to a
region about this averaged equilibrium.

Of course, (3.11) may well have solutions outside (—=1,1)
(and none inside). The system will then leave (—1,1) along
with the averaged equation, resulting in local instability and
“bursts”. When the averaged system leaves (—1,1) due to an
attractor outside this set, the time between bursts can be
estimated. Assume /i is uniform in (—1,1) and compute the
time k* at which A} is 1 or — 1. These times k* can then be
averaged over all h¥ to give the mean time between bursts.
This average is on the order of 1/ with an error of O(1).
This estimate agrees well with the observations in [3] that the
rate of drift toward instability is essentially linear in the
stepsize.

Note that if the distribution of ¥ is symmetric with respect
to /2 on (0,7), then F(h) reduces to just the first term
under the integral in (3.11). This has exactly one zero at
h =0, and consequently the hybrid will always work, that is,
hy = O(u) as k goes to infinity for suitably small /&, and u.

3.3. Sinusoidal Inputs

As evidence of the ease of application of (3.11), consider
the case of sinusoidal inputs v, =V cos ak, w, =W cos Bk
with 0 <a <, 0<B<m and a+B. The functions f(h)
and g(h) can be readily calculated to give F(h) of (3.11).
Using pole—zero techniques it is possible to verify that F(h)
=0 has only one real root, which belongs to (—1,1) if and
only if

V2 cosa+l 1
0<—<——"
w cosB+1 cosa
for cos a > 0, and (3.13)
y? cosa-1 1
0<—2<————'
w 1—cospB cosa

for cos e < 0. When (3.13) holds, F(1)>0 and F(-1)<0,
which demonstrates stability of the equilibrium and gives the
region of attraction as (— 1,1). This extends the analysis of
[12] in a form which is easily generalizable to higher dimen-
sional problems, and also gives a valuable expression for the
domain of attraction of the equilibrium. One might also
extend these basic averaging results to consider almost peri-
odic inputs (as in [18]), though we have not pursued this
avenue here.

1V. THE PICTURES...

The analysis of the previous sections has brought us to the
point where we can give a fairly complete explanation of the
global behavior of the single parameter adaptive hybrid.
Consider Fig. 7. For |a| <1, there is a unique stable equilib-
rium. At a =1 there is a flip bifurcation (equation (2.2.5))
that sheds a two periodic orbit, which is initially stable
(2.3.7)-(2.3.8). At about « ~ 13.85, there is another bifurca-
tion, with the exact value of the parameter dependent on the
value of p (u=0.01 was used). The two periodic orbit
becomes unstable and a stable four-periodic orbit is formed.
At around a > 14.36, instabilities due to the stepsize over-
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Fig. 9. Phase portrait for a = —1.02.




Fig. 10. Multiple phase portraits for y=0.

whelm the system, and we lose the ability to track the
behavior.
In the negative direction, the behavior is considerably

more complex. The point at a = —1 is a global bifurcation
point. With respect to the equilibria (2.2.3), the Jacobian can
be written
h* 0
( B ) (4.1)

which has eigenvalues at 1 and A* for any h*. Thus the
subspace y*=0 is attractive for |A* <1, and repellant for
|h*| > 1.

Fig. 8 gives a graphic interpretation of the behavior of the
phase trajectories of the system at this global bifurcation
point. In the left half plane, the trajectories bounce from top
to bottom at alternate iterations, eventually flowing into one
of the attractive points at y*=0 and |[h* <1. In the right
half plane, trajectories move straight to the y*=0 line or
they become trapped about the equilibrium at (1,1). The
h = —1 point is the germ that starts the two periodic orbit
that later undergoes a Hopf bifurcation. The A=1, y =1
point is the fixed point analyzed above which undergoes a
Hopf bifurcation and is the origin of the stable aperiodic
orbits seen for a near —1.

As a crosses the —1 bifurcation point, several things
happen. Compare Fig. 8 with Fig. 9, which shows a phase
portrait of several trajectories for a = — 1.02. First, the equi-
librium becomes unstable (as shown in (2.2.5)) and the sur-
rounding orbits become unstable. This is pictured in the
outward spiral in the upper right-hand corner of Fig. 9. Note
that the arrows have been added to the simulation to indi-
cate the general direction of motion. Second, the y=0,
h=—1 point splits into an unstable two periodic orbit (as
demonstrated in (2.3.7)-(2.3.8)). These are the small x’s
inside the small circles near the & = —1 point. Most likely,
the circles themselves are stable aperiodic orbits. Third, the
subspace of equilibria disappears, and is replaced by a long,
slowly moving trajectory that channels the right half plane
trajectories to the aperiodic orbit near &= —1. This can be
explained by the averaging analysis of Section IIL The “lin-
ear” drift corresponds to the slow motion of x*(#,) of (3.1)
for small p. Such a long slow funneling trajectory is thus

expected (and encountered in simulations) for more general
inputs as well.

As |a] increases further (a small amount that appears to go
to zero as the stepsize u vanishes), the aperiodic orbits grow
larger, until at a ~1.04 (for p=0.01) the touch. At this
point, the aperiodic orbit appears to become unstable, and
the behavior of Fig. 5 appears. This simulation was begun
after 25 million iterations...; one can only suppose that the
tattered edges of this figure are not transients that will die
away, but rather are in intrinsic feature of its behavior.

It is fair to say that we do not have a detailed understand-
ing of this region in parameter space. We observe aperiodic
orbits, and p-periodic orbits for just about any p. For in-
stance, at a=—10 and p=0.001 there is a stable 108
periodic orbit. At a =—29 (and n= 0.001) there is a stable
18 periodic orbit existing simultaneously with an aperiodic
orbit (but with different regions of attraction, with a possibly
fractal boundary). We are unsure how to classify Fig. 5,
though it does provide a pictorial explanation of the “burst-
ing” phenomena in adaptive hybrids.

In [3], bursting was described as non-periodic, yet repeti-
tive. It appeared bounded, yet it never “settled down” to any
limit cycle. The bursting behavior consists of a long linear
drift phase (the horizontal segment just below the h axis),
followed by a “short” wildly oscillating phase (where in a
handful of iterations the y values oscillate ‘to large values,
and then just as rapidly “restabilize). If one plots Fig. 5 as
the h value verses time instead of in the phase plane, the
graph is nearly identical to the plots in [3].

Moreover, it is easy to see that as « decreases (gets larger
in magnitude) the underlying unstable two-periodic orbit
grows away from the h axis (from (2.3.4) and (2.3.6)). This
causes the unstable aperiodic orbit to increase, and hence
the magnitude of the fuzzy ovals in Fig. 5 increases. Since «
is the ratio of the two inputs, this essentially ties the magni-
tude of the bursts to the disparity of excitation. In adaptive
systems terminology, where the input to the adaptive ele-
ment is called the “excitation” and the input that appears
directly in the error term r; (recall Fig. 2) is considered the
“disturbance,” one says that the degree of excitation (the
ratio of these two terms, in our case, a) is insufficient to
guarantee stability of the algorithm. The present dynamic
analysis suggests that such a degree of excitation condition is
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virtually necessary in order to avoid undesirable behaviors
such as the strange ‘“bursting” of Fig. 5. The averaging
analysis shows that magnitude alone is not enough to specify
the true “region of stability,” and that frequency effects must
also be taken into account. In particular, signals which are
uncorrelated have the best chance of avoiding the bursting
misbehavior.

Returning to the bifurcation diagram of Fig. 7, note the
bifurcations at & = —4, 13.8, and 14. These (and the resul-
tant four periodic and unstable behaviors) are due to a
violation of the small stepsize assumption (as shown in
(2.3.9)) caused by the form of our parametrization of u as
w'/w? By reparametrizing the system with a=1/y, it is
possible to sidestep the small u issue, and to examine the
behavior for a near (and at) infinity. This was, in fact, the
case analyzed in [3]. The y = 0 (a = infinity) point is shown
to be a nondegenerate Hopf bifurcation (2.3.13), where the
two periodic orbit changes from stable (y =0") to unstable
(y=07). Fig. 10 shows a multiple trajectory phase portrait
of this bifurcation point. The marginally stable two periodic
orbit lies in the center of the sets of nested ellipses, sur-
rounded by families of what appear to be aperiodic orbits.
The dark “tail” that stretches into the right half plane is a
funnel that collects trajectories and feeds them to the aperi-
odic orbits (representing x* of the averaged equation). This
diagram suggests that there will likely be a great deal of
sensitivity to initial conditions and to small roundoff (or
other) errors, since trajectories close together on the “tail”
may well ultimately join very different ellipses. Thus, the
qualitative behavior is robust to small perturbations (all
trajectories studied ultimately enter one of the ellipses) while
the quantitative behavior is susceptible to numerical prob-
lems (it is hard to tell which ellipse a given starting point will
join).

The adaptive hybrid appears to also be susceptible to the
period doubling route to chaos, as in Fig. 11. This bifurcation
diagram 2, 4, and 8 period orbits for varying values of a (for
w = 0.05). This route to chaos is essentially due to a violation
of the small stepsize assumption since w fails to be always
less than 2/y? The domain of attraction of the periodic
orbits shrinks rapidly for large values of «, and numerical

Bifurcation diagram showing period doubling.

errors lead to instabilities while simulating. This path has not
been pursued in detail.

Overall, we have provided three possible explanations of
the observed bursting behavior of the adaptive hybrid. For
a > 1, the bursting may be a transient phenomena that will
eventually decay into a two periodic orbit. For @ < —1, the
bursting may be due to strange dynamics as in Fig. 5. For «
at infinity (i.e., w=0), the bursting may be an aperiodic
orbit. In the latter two cases, the behavior is not transient
and will not die away with time.

V. CONCLUSIONS

The simplified model of the adaptive hybrid system has
been analysed, leading to the bifurcation chart of Fig. 7. This
details the regions of stability and instability of the various
equilibria, periodic orbits, aperiodic orbits, etc., that arise
from the various types of bifurcations. The strange dynamics
of Fig. 5 were identified and seen to arise from a particular
degenerate global bifurcation. The adaptive hybrid of (1.5) is
one of the simplest known systems which exhibits such com-
plex dynamics, and as such may provide a useful test bed for
analysis of this complicated form of nonlinear behavior.

The results may help to explain the “bursting” behavior
encountered in adaptive systems such as the hybrid. Depend-
ing on the operating conditions, the bursting may resemble a
stable periodic orbit, a stable aperiodic orbit, or a more
complicated figure such as a strange attractor. These behav-
iors arise when the normal operating conditions of the adap-
tive scheme fails, that is, when the ratio of the power of the
“input” to the power of the “disturbance” falls below a
certain threshold. This can be described as a lack of persis-
tence of excitation.

In surveying the adaptive literature, there have been nu-
merous attempts to both describe and explain the misbehav-
iors of adaptive systems. The bursting of the adaptive hybrid
is chronicled in [3]. In [5], the bursting of an adaptive control
scheme is attributed to a lack of persistence of excitation
combined with the presence of disturbances inside a feed-
back loop. In [6], an adaptive infinite impulse response (IIR)
identification scheme is shown to undergo repetitive bursts



SETHARES AND MAREELS: DYNAMICS OF AN ADAPTIVE HYBRID

of destabilization, followed by restabilization. This behavior
appears nearly identical to the bursting encountered here,
and is extended in [11] to an examination of the chaotic
dynamics for large stepsizes. In [4], chaotic behavior of an
adaptive regulator is shown when the stepsize is allowed to
become large (essentially deadbeat identification), showing a
parallel to the breakdown of our analysis using the a param-
eterization for large «. In {7], periodic solutions are de-
scribed for adaptive systems in the presence of small periodic
forcing terms. Recently [14] and [15], interest has been
growing in bifurcation-style analyses of the mechanisms of
adaptation.

The above analyses are linked in that the adaptive element
lies inside a feedback loop. Though the exact equations
change with each application, misbehaviors arise when the
excitation conditions fail. For the adaptive hybrid excited by
constant inputs, we have classified several types of possible
(mis)behavior. We suspect that the problems encountered in
all of the above analyses are linked, that it is not a pathology
of adaptive control, or of adaptive (IIR) identification that
such nonlinear behaviors arise. Rather, such “bursting” is an
unavoidable consequence of the use of standard adaptive
schemes embedded inside a feedback loop when the excita-
tion conditions fail. In essence, this suggests that the persis-
tence of excitation conditions are virtually necessary to as-
sure that one remains in the “good” operating region, the
upper third of the bifurcation pie of Fig. 7.
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