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Avoiding Global Congestion Using Decentralized
Adaptive Agents

A. M. Bell and W. A. Sethares

Abstract—Everyone wants to go to a bar calledEl Farol if it
is not crowded but would rather stay home if it is. Unfortunately,
the only way to know whether or not the bar is crowded is to go.
While such a scenario appears far removed from the typical com-
munications literature, it provides a simple paradigm for analyzing
public goods like the Internet, which may simultaneously suffer
from congestion and coordination problems, e.g., multiple users
trying to connect to the same server or to use the same resource si-
multaneously. This paper reviews previous solutions to theEl Farol
Santa Fe bar problem, which typically involve complex learning al-
gorithms. A simple adaptive strategy similar to many signal pro-
cessing algorithms such as LMS and its signed variants is proposed.
The strategy is investigated via simulation, and the algorithm is an-
alyzed in a few simple cases. Unlike most signal processing appli-
cations, the objective of the adaptation is not fast and accurate pa-
rameter estimation but rather the achievment of a degree of global
coordination among users.

Index Terms—Coordination failure, El Farol, multiagent
systems, network congestion.

I. INTRODUCTION

E L Farol is a bar in Santa Fe. The bar is popular but be-
comes overcrowded when more than 60 people are there

on any given evening. Everyone enjoys themselves when fewer
than 60 people go, but no one has a good time when the bar is
overcrowded. How can, or how do, people choose whether to go
to the bar on any given evening?

This simple scenario provides useful and counterintuitive
insights into the performance of large-scale information tech-
nology systems that have decentralized decision making and
rapid endogenous changes in the operating environment. It is
a simplified model of a class of congestion and coordination
problems that arise in modern engineering and economic
systems. For example, despite rapid technological advances
and constantly expanding bandwidth, the Internet can become
congested when a large number of people independently decide
to visit the same web site or to download files at the same time.
The level of congestion is endogenously determined by the
actions of hundreds or thousands of users [8].

Standard models of congested public, or freely available,
resources focus on the marginal costs that an individual user im-
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poses on other potential users (e.g., the classic papers by Hardin
[6] and Vickrey [18]). For example, each person who visits a
popular web site increases the download time of other users.
Explicitly charging users for these unobserved costs can help
eliminate the socially inefficient congestion of a scarce resource
[11]. However, these models typically analyze equilibrium solu-
tions in which all agents are fully informed about the structure of
the problem and the behavior of other agents, which limits their
applicability to modern information systems such as the Internet.

In contrast, this paper focuses on the interaction between indi-
vidual learning strategies and the environment that agents face.
Congestion arises in the deterministic version of theEl Farol
or Santa Fe bar problem because agents constantly attempt to
predict the aggregate behavior of other agents, which simulta-
neously depends on all agents’ predictions. If agents could per-
fectly predict the behavior of all other potential bar goers,El
Farol would never experience congestion. In other words, there
need not be a “tragedy of the commons” [6] or a congestion ex-
ternality at the bar.

The structure of the problem resembles the market entry game
found in the economics literature. Agents choose between en-
tering a market, where the payoff depends on the total number
of entrants, and not entering a market, which has a fixed payoff.
The market entry game has been studied theoretically by Selten
and Guth [13] and Gary-Bobo [4] and experimentally by Sun-
dali et al.[17], Rapoportet al.[12], and Er’ev and Rapoport [3].

Using the bar problem to model the large-scale Internet envi-
ronment focuses attention on congestion that arises from coordi-
nationfailureacrossagentsaswellasfromabsoluteconstraintson
bandwidth.Forinstance,considerloggingontoalocalinternetser-
viceprovider. Ifonlyafewpeoplearealsoonline, thene-mailsand
downloadsoccur rapidly,andtheuserhasa“goodtime,”but if too
many people are online, then service is slow, graphics files are te-
dioustodownload,andtheuserhasabadexperience.Thedesireto
utilize Internetservices in the futuremaydependcruciallyonpast
experiences.Observethatthismodel isnotappropriateforpacket-
level features of the network (such as TCP/IP, ALOHA, etc.).

Arthur’s [1] original formulation of the bar problem proposed
a deterministic model of “inductive learning” at the level of indi-
vidual agents. Agents predict how many others will attend the bar
each time using a simple kind of inductive reasoning and decide
whetherornottoattendthemselvesaccordingly.Eachagentmain-
tainsanumberof“rulesofthumb”suchassimpleaverages,moving
averages, and linear or nonlinear filters to formulate predictions
and then acts on the rule with the best performance in the recent
past. If theypredictattendancewill be less than60, then theygo to
thebar; if theypredictattendancewill begreater than60 then they
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stay home.1 In Arthur’s simulations, the mean attendance is very
closeto60.However,attendancevariesgreatly,oftenexceeding70
ordroppingbelow50.Abouthalfof the time,more than60people
visit the bar, all of whom have a bad time.

According to Arthur, the dynamic behavior observed in sim-
ulations arises because successful predictions shared by many
agents are self-defeating. Whenever attendance exceeds or falls
below 60, a large number of agents must be wrong in their pre-
dictions, no matter how the predictions are made. Note that the
number of agents who make wrong predictions depends on the
variance, not the mean, of attendance. These incorrect predic-
tions drive the continual churning of rules that Arthur observes
in his simulations. Furthermore, Arthur notes that “any com-
monality of expectations gets broken up. If all believefewwill
go,all will go, but this would invalidate that belief. Similarly, if
all believemostwill go, nobodywill go, invalidating that belief.
Expectations will be forced to differ.” Thus, Arthur argues that
agents must utilize a heterogeneous set of predictive rules, un-
dermining the “rational expectations” approach that prevails in
many economic models.

In this paper, we show that agents need not utilize different
rules, nor must they constantly switch between rules, when de-
ciding whether to attend the bar. We propose a simple adap-
tive scheme (based on habit formation and adaptive signal pro-
cessing techniques similar in spirit to [19]) that, if followed by
all agents, leads to an outcome close to the socially optimal at-
tendance of 60 agents per night. The next section motivates this
adaptive strategy and details the algorithm. Section III examines
the generic behavior of the adaptive strategy using simulations.
The analysis of Section IV concretizes the simulation results by
examining the behavior of the algorithm in certain simple cases.
The final section places the adaptive solution in the broader con-
text of congestion problems on the Internet and suggests several
areas for further investigation.

II. A DAPTIVE AGENT-BASED SOLUTION

The agent’s decision process is determined by a simple be-
havioral algorithm. Agents do not predict the aggregate behavior
of the system; rather, they base their decision to go to the bar or
to stay home on their recent experiences. Agents’ attendance de-
cisions are parameterized by a rate or period that determines the
frequency of attendance where each agent initally attends once
every time periods.

Assume that people prefer to experience good times rather
than bad, to repeat the enjoyable, and to minimize the un-
pleasant. In response to a pleasant experience at an uncrowded
bar, the agent goes more often (decreases). Similarly, in
response to an unpleasant experience at a crowded bar, the
agent goes less often (increases). The agent’s behavior is
expressed in the form “go to the bar everyperiods.” Over
time, the agent’s experiences become encoded in the parameter
. An agent who has had many pleasant experiences at the

1If agents’ behavior has a random element, it is easy to achieve a mean atten-
denceof60bysettingeach agent’sprobability ofattending to60%.Definingsuch
a “mixed strategy,” where agents’ choices involve randomization, requires a re-
wardstructurethatspecifiesthecostsandbenefitsofstayingathomeandattending
a crowded or uncrowded bar.

bar goes frequently (has a low), whereas one who has had
a series of bad experiences goes rarely (has a high). The
adaptive scheme proposed here is analogous to habit formation
(or reinforcement learning) on the part of agents. Agents only
observe the congestion level online or attendance at the bar
when they themselves log on or attend.

When exactly 60 agents attendEl Farol, the bar is neither
overcrowded nor undercrowded. All bar-going agents enjoy
themselves, but no agent who chose to stay home would
have been better off at the bar. Indeed, all bar-going agents
would have been worse off if one more agent had chosen to
attend. How might agents respond to this knife-edge scenario?
Interpreting the adaptive strategy as a type of habit-formation
suggests that agents would continue to increase their frequency
of attendance because all attending agents had a good time.
Interpreting the strategy as a type of reinforcement learning
suggests that agents would neither increase nor decrease their
frequency of attendance because an increase in attendance
beyond 60 would result in a worse outcome for all attendees.
In order to allow for both scenarios, the specification of the
adaptive strategy includes a “dead zone” [14] (indicated by
a parameter ) below the point at which the bar becomes
crowded. Agents neither increase nor decrease their frequency
of attendance when attendance atEl Farol falls in the “dead
zone.” Results presented below indicate that the behavior
of the system can depend critically on the treatment of such
borderline cases2 and on the assumption that agents only learn
attendance at the bar on nights that they themselves attend.

The adaptive strategy for the bar problem resembles the al-
gorithm for the “number guessing game” described in the first
chapter of Johnson [9]. When new information reveals that the
current guess is too low (or too high), then the guess is increased
(or decreased). Although the unknown quantity in the bar sce-
nario varies over time and depends directly on other agents’
guesses, the simplicity of the adaptive scheme and its structural
similarity to other algorithms suggest strategies for analyzing
the resulting behavior.

A. Algorithm Statement

To write this strategy in symbolic form, suppose there are
agents and spaces at the bar before it becomes crowded. Let

represent the size of the dead zone. Letbe the period
at which the th agent attends, and let, which is the “phase,”
be the number of timesteps until theth agent attends next (thus,

is always less than or equal to). The parameter indicates
how often the agent attends the bar, for example, if ,
the agent attends once every 20 timesteps. The parameter
indicates how many timesteps remain before the agent goes to
the bar. For example, if and the agent attended the bar
five timesteps ago, then , and the agent will next attend
15 timesteps from now.

Let be a stepsize parameter that defines how much theth
agent changes in response to new information. Note that the
stepsize is small and varies across agents. The time (iteration)
counter is denoted by. Since the and change as time

2Arthur does not specify how agents deal with borderline cases in his original
paper.
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evolves, and designate the instantaneous values of
and at the time . Thus, the pair represents

the state of theth agent at time , and the concatenation of all
pairs gives the state vector for the entire system.

Let

(1)

count the number of agents attending at time, where is
the indicator function that is one if the eventis true and zero
otherwise. The evolution of the and is defined by

Max Dsgn

(2)

where Dsgn represents the signum function, with a dead
zone as discussed above, that is positive when , negative
when , and zero otherwise. The term is a stepsize
that scales the agents response and may also depend on time,
although this dependence has been suppressed in (2).

For each agent, the initial values of and are chosen
randomly. Each agent’s “phase” term counts down until it
drops below one. Meanwhile, the counterremains unchanged.
Once reaches one, the agent attends the bar. At this point,

is increased by if bar attendance exceeds (the bar is
crowded), decreased by if the bar attendance is lower than

(the bar is uncrowded), and remains unchanged if atten-
dance falls in the dead zone just below the cut-off point. The
phase is then reset to the current (updated) value of. The
counter always remains positive because of the Maxfunc-
tion.

B. Derivation of the Algorithm

The algorithm for individual agents detailed above is now de-
rived as an approximation to an instantaneous gradient descent
for minimization of the global cost or social welfare function

avg (3)

where

avg (4)

is the average of the number of attendees over a window of
length . In other words, when each individual agent uses the
proposed adaptive strategy, the system as a whole tends to min-
imize deviations away from the moving average of attendance
over time. Note that this global cost function weights deviations
above and below the optimum of 60 equally. Substituting (1)
into (4) gives

avg

However, the event occurs once every timesteps;
therefore, for a large window length and a small stepsize

, the event occurs approximately
times, where is the largest integer contained in. Hence

avg

for large windows . Hence

avg
(5)

The typical gradient strategy updates the state by

(6)

although in theEl Farol problem, this update occurs only when
the agent attends the bar. With as in (3) and ignoring the
singularity at

sgn avg
avg

sgn

The instantaneous approximation to the gradient replaces
avg with the instantaneous value . Combining
this approximation with (5) and (6) gives

(7)

which holds whenever . Combining (7) with the phase
terms (so that the update to occurs only when the
th agent is part of the sum ) gives the complete algorithm

(2), where is identified with . The “sgn” func-
tion can be readily generalized to incorporate the dead zone by
suitable modification of the cost function (3), which is a stan-
dard procedure in the adaptive filtering literature; see, e.g., [14].
In this case, the global cost function treats deviations above the
optimum and below the dead zone equivalently.

Alternatively, one could consider the squared cost function

avg (8)

Repeating the logic of (5) to (7) leads to a kind of least mean
square update [7]

(9)

Here, the cost function weights large deviations away from the
optimum more heavily but again treats overcrowding and under-
crowding symmetrically. The full algorithm incorporating the
phase is identical to (2) with the Dsgn function removed.

C. Comparison with Standard Adaptive Algorithms

Iterative minimization of a cost function using approximate
gradient descent methods is a standard signal processing
strategy [7]. Perhaps the most common technique is the least
mean square (LMS) algorithm [19] that has been modified
in many ways to improve convergence or tracking (such as
normalized LMS [9]), to decrease numerical complexity (such
as the signed regressor LMS [16]), or to decrease its sensitivity



2876 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

to disturbances [5], [20]). This section details the relationship
between standard signal processing algorithms and the similarly
structured algorithms derived above for theEl Farol problem.

All the algorithms have the basic gradient form that the new
estimate is the old estimate plus a correction term defined as a
scaled version of the (negative) gradient. The term is
reminiscent of the stepsize update in the normalized LMS since
it decreases as grows. The term is analogous
to the “error” term in LMS, whereas the sgn is the
equivalent error term from the “signed-error” LMS. Although
the may appear to be problematic, it is actually well
behaved since is never less than one. The presence of the
“knife-edge” is paralleled by the sgn function, and sign func-
tions with dead zones are commonplace in the adaptive signal
processing literature [14].

Despite these similarities, the origin of the problem renders
the El Farol algorithms quite different. First, the cost function
avg is not the same as avg (as

used to derive the signed-error LMS algorithm in [15]) since
the direct analog would be avg . Similarly, the
cost function for LMS has the average (or the expectation in
a stochastic setting) outside the square rather than inside, as in
(8).

Second, is not a fixed (linear or nonlinear) target func-
tion with parameters to be identified. Since all agents are inter-
changeable, there are many possible equilibria that will mini-
mize the cost. Hence, the error surface is not quadratic nor even
unimodal in , and proving convergence is a more subtle
affair. The presence of the phase terms means that con-
vergence is only possible to a periodic state and not to a fixed
equilibrium. These issues are explored further in Section IV.

On a more fundamental level, unlike the majority of signal
processing applications of adaptive algorithms, the objective in
this case is not fast or accurate parameter estimation. Rather, the
objective is to achieve a degree of global coordination among
multiple independent agents.

III. GENERICBEHAVIOR OF THEADAPTIVE SOLUTION

A few example simulations illustrate the dynamics of a bar-
going society in which each agent utilizes the strategy (2) de-
fined above. Although details of the various simulations differ
depending on the size of the population, the capacity of the bar,
the size of the dead zone, and the initial conditions, Fig. 1 repre-
sents the typical behavior of attendance over time. In this case,

and . The counters and phases were
initialized randomly.3 In this case, too few people attend the
bar initially. Other initializations that result in too many agents
attending at the start exhibit similar periods of transience and
similar long run behavior.

Perhaps the most striking aspect of these simulations is that
the number of attendees converges within a few hundred itera-
tions to the dead zone below the optimal value of attendance.
After the initial transience resolves, spikes of attendance above

3In this simulation, thec (0) were uniformly chosen between 1 and 10, and
thep (0) were uniformly chosen between 1 andc (0). The step sizes� were
chosen randomly between 0.1 and 1.0. The behavior of the algorithm appears
insensitive to the particular values chosen.

Fig. 1. When all agents use the adaptive solution, the number of attendees only
rarely exceeds the criticalN = 60.

Fig. 2. Emergent property of the adaptive solution is that the population
divides itself into “regulars” and “casuals.”

60 occur infrequently. All agents base their attendance deci-
sions on local information, that is, on their own experiences,
but nonetheless, attendance largely remains in the dead zone
just below the optimal choice of a central planner. In compar-
ison, both Arthur’s inductive learning and Edmond’s genetic
programming approaches generate far greater excursions away
from the optimal value.

The simulations also reveal an interesting pattern in the be-
havior of individual agents. Fig. 2 shows values of the coun-
ters , ranked from smallest to largest, at the final itera-
tion of a typical simulation run. Fifty-four agents
have equal to 1, indicating that they go toEl Farol every
time. The remaining agents with larger counters vie with each
other for the remaining open slots. The occasional spikes in at-
tendance in Fig. 1 occur when several of the remaining agents
happen to go simultaneously. Thus, the casuals are collectively
vying for the few remaining spaces left by the regulars. It is pos-
sible that the counters of the casuals will continue to increase
without bound. We show one such case in the next section. It is
also possible that the counters may settle into a periodic steady
state where several of the casuals alternate with each other to
fill one of the empty slots. (Such periodic states are easy to con-
trive by suitable choices of initial values, but they do not seem
to occur generically in the simulations.) While initial conditions
such as the stepsizeand the phase help determine which
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Fig. 3. In this simulation, each agent updates its counter at every time step.
Using more information does not necessarily lead to better results.

agents attend every period and which agents attend infrequently,
the same patterns of attendance develop.

Thus, the population has segregated itself into a group of “reg-
ulars” who go to the bar every time and a group of “casuals” who
only attend occasionally. Asked about their experiences atEl
Farol, the regulars say “It’s great, I go there all the time, and it’s
almost never crowded.” Asked the same question the casuals say
“I hardly ever go, and when I do, it often seems crowded.” Both
groups are right: Their different perspectives reflect different
experiences and different data about the environment. This divi-
sion of the population does not appear in the algorithm statement
or the corresponding global cost function; rather, it is an emer-
gent property of the adaptive solution to theEl Farol problem.
When agents follow this adaptive strategy,El Farol looks more
like Cheers. As the following section demonstrates, the system
defined by the algorithm (2) has a large number of equilibria;
this type of habit formation or reinforcement learning tends to
select those equilibria in which one group of agents attends reg-
ularly and another group attends sporadically.

In Arthur’s simulations, agents know the history of atten-
dance at the bar regardless of whether they attend or not. The
final simulation, which is shown in Fig. 3, investigates the effect
of allowing the agents to update their counters at every iteration,
whether they have personally attended the bar or not. Observe
that the variance about is much larger than in Fig. 1,
and there is a cloud of values around 30, indicating that seats
in the bar often remain unfilled.4 When all agents have access
to the same information about attendance, they all respond si-
multaneously, and the individual decisions of the agents collec-
tively overshoot or undershoot the optimum, creating inefficient
variations in attendance. Somewhat paradoxically, the adaptive
solution functions better when agents’ have heterogeneous and
limited information sets.

This insight suggests that universal access to information
may reduce the global efficiency of some systems. For ex-
ample, in financial markets in which current prices depend
critically on individual expectations of future prices, the
rapid simultaneous dissemination of information may lead to

4This behavior is observed in about half of the simulations, with the cloud of
values that represents the clustering or herding of agents with similarc centered
around different values.

bubbles or overshooting relative to fundamental or underlying
economic conditions. This issue may also arise in decentralized
algorithms for managing traffic flows on the Internet; globally
available information about the level of congestion may lead
to an instantaneous over-response that merely shunts the
congestion from point to point rather than distributing it evenly
across possible routes. In contrast, more selective or slower
distribution of information may induce a smaller response,
giving the entire system time to adapt smoothly to changing
conditions.

IV. A NALYSIS OF THE ADAPTIVE SOLUTION

The analysis of the system focuses on defining and character-
izing the equilibria of the system. In addition, under certain cir-
cumstances equilbria fail to exist: Some agents attend less and
less frequently, their counters diverging toward infinity, albeit at
an ever slower rate.

In a strict formal sense, the system defined by (2) with
has no equilibria because the phase termscontinually de-

crease from to zero, only to be reinitialized at . However,
if agents’ counters (the vector ofs) do not change, then nei-
ther does the pattern of attendance at the bar; the only exter-
nally observable quantity is completely predictable. Con-
sequently, an equilibrium in terms of attendance can be defined
as follows.

Proposition IV.1: Consider (2) with fixed for
all . Suppose that for all . Then, is
periodic for .

In the following, an equilibrium of the system (2) refers to the
portion of the state and the corresponding periodic pattern of

attendance, in accordance with the proposition.
The El Farol problem contains a knife-edge response to

increased attendance; the transition from an uncrowded to
a crowded bar depends on the behavior of any one agent.5

Consequently, when agents use predictive behavioral rules
like those utilized by Arthur, the definition and analysis of
equilibria depends crucially on how the agent accounts for his
or her own behavior. For example, suppose that attendance at
El Farol has been 60 for the last ten periods and that all agents
correctly predict attendance of 60 next period. How should an
individual agent decide whether or not to attend in this case?
Common sense suggests that agents who have attended the bar
every period should continue to attend every period. On the
other hand, agents who have not attended at all in the last ten
periods should remain at home because the addition of another
agent will result in attendance of 61. Agents who have attended
irregularly should replicate their previous pattern of attendance.

While the adaptive algorithm proposed here does not rely di-
rectly on agents’ prediction of attendance, similar issues arise
in defining equilibria. When , the knife edge eliminates
the possibility of equilibria. Unless the sameagents, all with

, attend each period, at least one agents’ counter changes.

5Although this is an extreme assumption, similiar nonlinearities arise in con-
gestion models. No delays occur at a bottleneck when traffic is below capacity,
but once the capacity is reached, long delays can appear rapidly. The perfor-
mance of a computer network can degrade rapidly for all users with the addi-
tion of one more user [8]. Note that the introduction of a “dead zone” makes
this transition less extreme.
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This implies that the remaining agents never attend,
which in turn implies that their counters have diverged. The fol-
lowing result demonstrates a simple case in which theof cer-
tain agents must diverge toward infinity.

Proposition IV.2: Suppose is given, ,
and that for all . Suppose further that the system (2)
has evolved (or is initialized) so that there are “regulars”
with . The remaining agent (designated agent)
has . Then, , as .

Such agents increase their counters forever. Presumably, real
humans in such a situation would eventually withdraw and go
to some other bar.

The existence of a “dead zone” allows for a multitude of equi-
libria. To get an idea of the number of possible equilibria, con-
sider a single “slot” of the possible. This could be occupied
by a customer who attends every time. It could also be occupied
by two customers who alternate, i.e., who have different phases.
In general, any number could alternate on successive evenings
and still only occupy a single space at the bar. For ,
let represent the number of ways that the integer
can be partitioned into a sum of exactly integers. Let
represent the number of ways that 1 can be written as a sum of
exactly fractions of the form
for integers . counts the number of ways thatagents
can alternate to occupy a single bar stool. The total number of
equilibria is a combination of and .

Proposition IV.3: The algorithm (2) with has at most
equilibria.

V. CONCLUSION

Arthur believed that any solution to the bar problem would re-
quire heterogeneous agents, that is, agents who pursue different
strategies. In contrast, we have presented a simple adaptive so-
lution that can be followed by all agents and can readily solve
the problem. Each agent in the adaptive solution is characterized
by a parameter that determines how often the agent attends and
a stepsize that determines how much to change the parameter
in response to each visit to the bar.6 Our agents, like Arthur’s,
are boundedly rational and use completely deterministic deci-
sion rules.

The adaptive solution to theEl Farol problem differs from
Arthur’s strategy in several ways. We do not require agents to
make explicit predictions of the state of the bar. We introduce
the “don’t care” or dead zones to handle the transition from
uncrowded to crowded. Most importantly, we restrict agents’ to
using only the information that they have readily available, i.e.,
their own experiences. This differential access to information
helps create the diversity of actions that is crucial to an optimal
solution of theEl Farol problem. Arthur focuses on the global
behavior associated with a particular modeling strategy for
boundedly rational decision making. In contrast, the approach
detailed here demonstrates conditions under which an optimal
solution to a global optimization problem can be achieved in

6In any multiagent system, the agents may be homogeneous or heterogeneous
in terms of structures or in terms of parameters. Our agents are completely ho-
mogeneous in terms of structure; the varying stepsizes and initial conditions
makes them heterogeneous in terms of parameters. Arthur’s are heterogenous
in both parameters and structure.

the absence of coordination across decentralized agents. Arthur
focuses on modeling the behavior of people attending the bar;
we focus on strategies designed to optimize attendance.

The adaptive solution thus provides a simple mechanism
whereby a large collection of decentralized decision makers,
each acting in their own best interests and with only limited
knowledge, can solve a complex social coordination problem.
Convergence to the solution is relatively rapid (depending on
the initial conditions) and robust. Under certain singular initial
conditions, it is possible for some of the agents to “withdraw”
from the society. Nonetheless, the population of the bar remains
near its optimal value.

Do we believe that bar goers tick off the time till they can go
again, increasing or decreasing a counter with each new visit?
Of course not. However, the behavioral algorithm is in agree-
ment with the commonsense idea that people base their ex-
pectations of the value of an action on past experiences. The
algorithm can be generalized to to a probabilistic or mixed-
strategy decision-making framework where agents increase or
decrease their probability of attending based on previous experi-
ence. Moreover, the global behavior of the population is consis-
tent with certain kinds of coordination phenomena. For instance,
users of an Internet provider can spread demand over much of
the day, even though everyone might prefer (all else being equal)
to log on in the middle of the afternoon. By developing certain
habits (for instance, always logging on at the same time) users
send signals to others to avoid these times. In this way, demand
is smoothed.

There are many ways to generalize the algorithm. For in-
stance, different people have different tolerances for what con-
stitutes a crowd or an unacceptable delay. Each agent could also
have a parameter that represents their tolerance for congestion.
Additionally, to more closely model the Internet situation, one
might incorporate time-of-day or day-of-week as a parameter in
the process of logging on. It would also be instructive to create
a hybrid situation in which a number of Arthur-like agents and a
number of adaptive agents compete for spaces at the bar. We hy-
pothesize that the more goal directed adaptive agents will again
become regulars at the bar, relegating Arthur’s more haphazard
agents to squabbling over the few remaining seats.
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